
Real-time Non-rigid Reconstruction using an RGB-D Camera

Michael Zollhöfer1 Matthias Nießner2 Shahram Izadi3 Christoph Rehmann3 Christopher Zach3 Matthew Fisher2

Chenglei Wu4 Andrew Fitzgibbon3 Charles Loop3 Christian Theobalt4 Marc Stamminger1

1University of Erlangen-Nuremberg 2Stanford University 3Microsoft Research 4Max Planck Institute for Informatics

Figure 1: Our system enables the real-time capture of general shapes undergoing non-rigid deformations using a single depth camera.
Top left: the object to be captured is scanned while undergoing rigid deformations, creating a base template. Bottom left: the object is
manipulated and our method deforms the template to track the object. Top and middle row: we show our reconstruction for upper body, face,
and hand sequences being captured in different poses as they are deformed. Bottom row: we show corresponding color and depth data for the
reconstructed mesh in the middle row.

Abstract

We present a combined hardware and software solution for marker-
less reconstruction of non-rigidly deforming physical objects with
arbitrary shape in real-time. Our system uses a single self-contained
stereo camera unit built from off-the-shelf components and con-
sumer graphics hardware to generate spatio-temporally coherent
3D models at 30 Hz. A new stereo matching algorithm estimates
real-time RGB-D data. We start by scanning a smooth template
model of the subject as they move rigidly. This geometric surface
prior avoids strong scene assumptions, such as a kinematic human
skeleton or a parametric shape model. Next, a novel GPU pipeline
performs non-rigid registration of live RGB-D data to the smooth
template using an extended non-linear as-rigid-as-possible (ARAP)
framework. High-frequency details are fused onto the final mesh us-
ing a linear deformation model. The system is an order of magnitude
faster than state-of-the-art methods, while matching the quality and
robustness of many offline algorithms. We show precise real-time
reconstructions of diverse scenes, including: large deformations of
users’ heads, hands, and upper bodies; fine-scale wrinkles and folds
of skin and clothing; and non-rigid interactions performed by users
on flexible objects such as toys. We demonstrate how acquired mod-
els can be used for many interactive scenarios, including re-texturing,
online performance capture and preview, and real-time shape and
motion re-targeting.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Digitizing and Scanning; I.4.1 [Image Pro-
cessing]: Digitization and Image Capture—Scanning

Keywords: non-rigid, deformation, shape, surface reconstruction,
3D scanning, stereo matching, depth camera

Links: DL PDF

1 Introduction

Acquiring 3D models of the real-world is a long standing problem
in computer vision and graphics. For static scenes, real-time recon-
struction techniques are now highly mature [Newcombe et al. 2011;
Izadi et al. 2011; Nießner et al. 2013]. However, real-time recon-
struction of non-rigidly deforming objects remains challenging. The
ability to reconstruct the fine-grained non-rigid motions and shape
of physical objects in a live and temporally consistent manner opens
up many applications. For example, in real-time, a user can re-target
their motions and detailed expressions to avatars for gaming or video
conferencing. An actor’s performance and motions can be captured

http://doi.acm.org/10.1145/2601097.2601165
http://portal.acm.org/ft_gateway.cfm?id=2601165&type=pdf

online for live feedback and preview. By reconstructing the detailed
motion and shape of surfaces, systems can overlay digital content
onto the physical world in more convincing ways; e.g., for virtual
clothing, makeup, and other augmented reality applications. Finally,
deforming physical objects can become props for digital interaction,
further bridging the gap between real and virtual worlds.

Despite considerable advances in the field of non-rigid tracking and
reconstruction, there has been limited work on real-time techniques
that work on general scenes. In special cases such as hands, faces
or full bodies, researchers have demonstrated compelling real-time
reconstructions of non-rigid articulated motion [Oikonomidis et al.
2011; Taylor et al. 2012] and shape [Weise et al. 2011; Cao et al.
2013]. However, these rely on strong priors based on either pre-
learned statistical models, articulated skeletons, or morphable shape
models, prohibiting capture of general scenes. Reconstruction tech-
niques that can handle more general scenes are far from real-time
in terms of performance, and need seconds to hours to compute a
single frame [Hernández et al. 2007; Liao et al. 2009; Li et al. 2009].

In this paper, we present the first real-time reconstruction system
capable of capturing a variety of non-rigid shapes and their deforma-
tions. As demonstrated, our entire pipeline from depth acquisition to
non-rigid deformation runs at 33ms per frame, orders of magnitude
faster than state-of-the-art methods, while achieving reconstruction
quality and robustness that approach offline methods with more
complex sensor setups.

Our system is markerless, uses a single self-contained stereo camera
unit, and consumer graphics hardware. The stereo camera is built
from off-the-shelf components and uses a new stereo matching
algorithm to generate RGB-D images, with a greater degree of
flexibility and accuracy than current consumer depth cameras. Using
this camera, a smooth template model of the rigidly moving subject
is acquired online. This acts as a geometric and topological prior
for non-rigid reconstruction, but avoids strong assumptions about
the scanned scene, such as a kinematic skeleton or a parametric
shape model (e.g., for faces, hands or bodies) that would limit the
generality of our system. Then, for each live RGB-D frame, a
novel GPU pipeline performs non-rigid registration to the acquired
template model with an as-rigid-as-possible (ARAP) regularizer
and integrates detail using a thin shell deformation model on a
displacement map [Sorkine and Alexa 2007].

We show precise real-time reconstructions of diverse scenes, includ-
ing: large deformations of users’ heads, hands, and upper bodies;
fine-scale wrinkles and folds of skin and clothing; and non-rigid
interactions performed by users on flexible objects such as toys. We
demonstrate how acquired models can be used for many interactive
scenarios, including re-texturing, online performance capture and
preview, and real-time shape and motion re-targeting.

The specific contributions of our work are:

• A general, real-time, non-rigid reconstruction pipeline, non-
trivially realized on the GPU. While in the spirit of previ-
ous non-rigid reconstruction frameworks, in particular Li et
al. [2009], our GPU pipeline is orders of magnitude faster, with
many algorithmic and implementation differences.

• The creation of a fully automatic real-time non-rigid capture
system. This allows novice users to quickly generate tem-
plate models of arbitrary objects, whose motions and non-rigid
deformations can be captured with live user feedback.

• An interactive application of our non-rigid reconstruction
pipeline that demonstrates spatio-temporal coherent models
for motion and shape re-targeting in video games, performance
capture, and augmented reality.

• A lightweight visible light and infrared (IR) stereo camera
setup for generating compelling RGB-D input at real-time
rates, which allows us to capture higher quality RGB-D data
at closer ranges than consumer depth cameras.

2 Related Work

The emergence of depth cameras, such as the Kinect, has spawned
new interest in real-time rigid 3D scanning as exemplified by sys-
tems such as KinectFusion [Newcombe et al. 2011; Izadi et al. 2011].
It is therefore a natural next step to think about online capture of
non-rigid scenes using RGB-D cameras. Interestingly, follow-up
work based on KinectFusion specifically focused on scanning hu-
mans (e.g., for 3D printing or generating avatars) where the user
rotates in front of the Kinect while maintaining a roughly rigid pose,
e.g., [Weiss et al. 2011; Li et al. 2013a; Tong et al. 2012; Zeng et al.
2013; Helten et al. 2013]. Similar to [Brown and Rusinkiewicz 2007;
Weise et al. 2009a], in these offline systems non-rigid registration
techniques are employed to accommodate for small deviations in the
motion between different viewpoints. These systems are motivated
by producing a single mesh as output from an RGB-D sequence,
whereas we wish to continuously reconstruct non-rigid motions
during live capture.

Many multi-camera techniques for non-rigid reconstruction of ge-
ometry and motion have been proposed. Some are specifically
motivated by modeling complex human motion and dynamic geom-
etry, including people with general clothing, possibly along with
pose parameters of an underlying kinematic skeleton (see [Theobalt
et al. 2010] for a full review). Some methods employ variants of
shape-from-silhouette [Waschbüsch et al. 2005] or active or passive
stereo [Starck and Hilton 2007]. Model-based approaches deform
a static shape template (obtained by a laser scan or image-based
reconstruction) such that it matches a human [de Aguiar et al. 2008;
Vlasic et al. 2008; Gall et al. 2009] or a person’s apparel [Bradley
et al. 2008]. Vlasic et al. [2009] use dynamic photometric stereo in
a sophisticated controlled light stage dome with multiple high-speed
cameras to capture temporally incoherent geometry of a human at
high detail. Dou et al. [2013] capture precise surface deformations
using an eight-Kinect rig, by deforming a human template, generated
from a KinectFusion scan, using embedded deformation [Sumner
et al. 2007]. Other methods jointly track a skeleton and the non-
rigidly deforming surface [Vlasic et al. 2008; Gall et al. 2009], while
some treat the template as a generally deformable shape without
skeleton and use volumetric [de Aguiar et al. 2008] or patch-based
deformation methods [Cagniart et al. 2010].

These multi-camera approaches have runtime performances far from
real-time, and require dense camera setups in controlled studios,
with sophisticated lighting and/or chroma-keying for background
subtraction. However, with the availability of consumer depth
cameras, other more ‘lightweight’ camera setups have been pro-
posed [Hernández et al. 2007; Liao et al. 2009; Li et al. 2009; Weise
et al. 2011; Valgaerts et al. 2012; Chen et al. 2012; Wu et al. 2013;
Garrido et al. 2013]. Ye et al. [2012] capture multi-person perfor-
mances with three moving Kinects. Furthermore, in special cases,
such as for hands, faces and full bodies, researchers have demon-
strated compelling real-time reconstructions of articulated motion
[Oikonomidis et al. 2011; Wei et al. 2012; Taylor et al. 2012] and/or
non-rigid shape and motion [Weise et al. 2011; Cao et al. 2013; Hel-
ten et al. 2013]. However, these rely on strong priors based on either
an offline learned model [Taylor et al. 2012], an articulated skeleton
[Oikonomidis et al. 2011] or morphable shape model [Blanz and
Vetter 1999; Weise et al. 2011; Helten et al. 2013; Cao et al. 2013],
which prohibits capture of general scenes. Additionally, these real-
time methods are unable to reconstruct high-frequency shape detail
obtained with state-of-the-art offline approaches.

Rigid
Registration Non-rigid Fitting

Input

Coarse-Level

Prolongation &
Non-rigid Fitting

Medium-Level

Prolongation

Fine-Level

Detail
Integration

RGB-D
Estimation

Fused
3D model

RGB-Infrared
depth sensor

Multi-resolution
template hierarchy

RGB D

Real-time Non-rigid Reconstruction (30Hz) Online Template Acquisition (~1 min)

RGB-D
Estimation

Figure 2: Main system pipeline. Left: the initial template acquisition is an online process. Multiple views are volumetrically fused, and a
multi-resolution mesh hierarchy is precomputed for the tracking phase. Right: in the tracking phase, each new frame is rigidly registered to
the template, and a sequence of calls to the GPU-based Gauss-Newton optimizer is issued from coarse to fine mesh resolution. At the finest
resolution, detail is integrated using a thin-plate spline regularizer on the finest mesh.

The approach of [Li et al. 2009] uses a coarse approximation of
the scanned object as a shape prior to obtain high quality non-rigid
reconstructions. Other non-rigid techniques do not require a shape
or template prior, but assume small and smooth motions [Zeng et al.
2013; Wand et al. 2009; Mitra et al. 2007]; or deal with topology
changes in the input data (e.g., the fusing and then separation of
hands) but suffer from drift and oversmoothing of results for longer
sequences [Tevs et al. 2012; Bojsen-Hansen et al. 2012]. These more
general techniques are far from real-time, ranging from seconds to
hours to compute a single frame.

Our system attempts to hit a ‘sweet spot’ between methods that can
reconstruct general scenes, and techniques that rely on a stronger
shape prior (e.g., a blendshape face model or body or hand skeleton),
which are beginning to demonstrate real-time performance. To our
knowledge, our system is the first that provides real-time perfor-
mance, several orders of magnitude faster than general methods,
but does not require a specific ‘baked in’ kinematic or shape model.
Instead our system allows users to acquire a template online, and use
this for live non-rigid reconstructions. Our system is simple to use
and self-contained, with a single lightweight stereo camera setup,
moving closer to commodity or consumer use. Additionally, in terms
of reconstructed geometry detail, our method also narrows that gap
between offline and online methods. This simplicity and real-time
performance however does not come at a significant cost of recon-
struction quality (as shown in the results section), and brings us a
step closer to high-quality real-time performance capture systems for
consumer scenarios, including gaming, home and semi-professional
movie and animation production, and human-computer interaction.

3 System Overview

Our system is designed to deal with close range non-rigid reconstruc-
tions of single objects, such as faces, hands, upper bodies, or hand
held physical objects. The general usage scenario is illustrated in
Fig. 1, and the system pipeline in Fig. 2, and comprises two phases:
online template acquisition and real-time non-rigid reconstruction.

The first part of the pipeline is a online template acquisition phase
that takes ∼1 minute to perform. The user sits or stands in front of
our custom RGB-D sensor (up to 1½ meters away from the sensor).
First, the desired object is scanned while undergoing mostly rigid

deformations. Immediate feedback is provided during scanning
using the volumetric fusion framework of Nießner et al. [2013],
from which a triangle mesh model is automatically extracted. The
mesh is preprocessed to create a multi-resolution hierarchy to be
used in the online phase.

The second phase of our pipeline performs real-time non-rigid re-
construction, which produces a deformed mesh at every time step,
executing the following three steps at every frame:

1. Rigid registration roughly aligns the template to the input
data.

2. Non-rigid surface fitting by minimization of a fitting energy
which combines dense geometric and photometric model-to-
data constraints, as well as an as-rigid-as-possible (ARAP)
regularizer. The energy is minimized using a new efficient
GPU-based Gauss-Newton solver using the preconditioned
conjugate gradient method (PCG) in its inner loop. This solver
is applied in a coarse-to-fine manner, using the multi-resolution
mesh hierarchy prepared at template acquisition. At each level,
the fitting energy is optimized at the current resolution using
several iterations of Gauss-Newton, and then a prolongation
step interpolates the solution to the next finer level.

3. Detail integration at the finest template level: a thin-shell de-
formation energy under model-to-data constraints is minimized
by solving a linear least squares system for displacements
along the model normal at each vertex.

These components are now explained in detail after a description of
our custom stereo sensor.

4 Lightweight Active Stereo Sensor

For acquisition, we designed a new RGB-IR stereo rig which recon-
structs pixel synchronized RGB-D data in real-time. The use of a
custom depth camera provides us with a greater deal of flexibility
than consumer sensors. In particular, our specific scenario requires
close range capture at high quality, and most existing sensors are
limited in these terms. For comparison, in Sec. 6 we will also present
results of our system running with a consumer Kinect camera.

The sensor comprises a fully-calibrated pair of video cameras of
resolution 1024 × 768 providing both RGB and IR images with
the same center of projection (by employing a beam splitter). For
high-quality depth computation, we employ Kinect-type infrared
emitters in order to project a suitable pattern onto the surface to
be reconstructed. In contrast to the Kinect sensor in our setup, the
emitters are not calibrated with respect to the cameras and can be
placed freely to maximize the coverage of the emitted pattern in the
scene. For further technical details see the supplemental material.

For real-time depth acquisition we use a patch-match based stereo
algorithm inspired by [Bleyer et al. 2011], but in analogy to [Pradeep
et al. 2013] we reduce the search space complexity significantly by
not estimating local surface normals. Thus, the only unknown to
be determined at pixel p (at location (up, vp)) is the scene depth
Dp. Further, we deviate from the original propagation schedule of
patch-match stereo to achieve better GPU utilization. Our patch-
match stereo algorithm can be summarized as follows: the starting
phase to initialize the depth map with random samples is followed
by four (left-to-right, top-to-bottom, right-to-left, and bottom-to-top)
propagation steps, where the matching score of the current depth
hypothesis is compared with the one of the respective neighboring
pixel, and the better scoring depth value is retained. This prop-
agation strategy allows all rows (or columns) of the image to be
easily processed in parallel in the GPU implementation. We use
the zero-mean normalized cross-correlation (ZNCC) computed over
7× 7 windows as a matching score to assess the similarity of image
patches. The advantage of our patch-match stereo implementation
is its high speed (100 Hz to estimate 1024 × 768 depth images),
but all patch-match inspired algorithms produce piece-wise con-
stant outputs with an undesired “blocky” appearance. Consequently,
we refine the raw depth map produced by our patch-match stereo
method using a variational approach, which combines the (local)
matching score profile with a global smoothness prior as follows:
if we denote the depth map returned by patch-match stereo as D̂p,
then we minimize

E(D) =
∑
p

αp
(
Dp − D̂p

)2
+

∑
(p,q)∈E

ωpq (Dp −Dq)2 (1)

with respect to the depth values D = [D1, ..., DWH], withE the set
of 4-neighbor pixel pairs. We model the local behavior of the match-
ing scores near D̂p using a quadratic model, i.e., we fit a quadratic
function to the matching scores of D̂p − 1, D̂p, and D̂p + 1. This
determines the coefficient αp. In general, the local quadratic model
of matching scores should be a convex parabola, i.e., αp > 0, if D̂p
is at a (local) minimum. We avoid a non-sensible concave parabola
fitted to the matching scores by setting αp = 0 in these cases. Our
regularizer prefers smooth depth maps, but we avoid smoothing
over depth discontinuities by using a contrast-aware regularization
term, i.e., we introduce weights ωpq ∈ [0, 1] for neighboring pix-
els p and q, which are based on strong color edges in the RGB
images, ωpq = 1/(1 + β‖∇IL(up, vp)‖). Here IL(·) denotes
the left color image, and β is a tuning parameter always set to 20.
The objective in Eq. 1 is quadratic in the unknowns D, and we
use a GPU-implemented successive over-relaxation (SOR) solver
to obtain the refined depth values. Since we are only interested in
estimating and retaining depth for foreground objects, we utilize a
simple, color-based background subtraction step to discard depth
values corresponding to undesired background.

Our active sensor has a variety of advantages over existing real-time
scanners or low-cost depth cameras. The use of active (infrared)
illumination allows high-quality shape acquisition without solely
relying on the object’s texture (as in passive stereo) or distorting
the color image (as in some fringe-based techniques). Our stereo

Figure 3: Left: our active stereo sensor. Middle: patch-match result.
Right: Result after variational refinement.

setup allows the baseline between the cameras to be modified eas-
ily in order to adapt to the observed volume of interest. Changing
the baseline in our setup requires a standard geometric calibration
procedure to determine the new relative pose between the cameras.
This is in contrast to the Kinect camera, which has a fixed baseline
and would require a more difficult projector-camera calibration if
the baseline is changed. Compared to time-of-flight cameras, it
features a much higher depth and image resolution and does not
suffer from their well-known systematic data distortions due to light
modulation, reflectance dependencies and multi-path light trans-
port [Kolb et al. 2009]. We employ a prototype setup built from
standard vision cameras and do not have the same small form factor
as mass-manufactured depth cameras. However, in mass production
similar form factors and production cost could be achieved while
maintaining its technical advantages.

5 Surface tracking as model fitting

Our template model is a hierarchy of triangle meshes (typically three
levels; see Fig. 2) where vertices of a finer level are connected by
a space deformation to the next coarser level [Sumner et al. 2007].
This connection is used to apply the prolongation operator (see
Sec. 5.2.3). The hierarchy levels are computed through a series of
mesh simplification and Laplacian smoothing steps. Note that the
transition between template capture and non-rigid tracking is fully
automated and seamless, requiring a few seconds to execute.

Each triangle mesh is defined by n vertices V0 = {v0
i ∈ R3 |

i = {1, . . . , n}} and m edges. The mesh topology is constant
during tracking, and is queried only via the setsNi, which hold the
indices of vertices sharing an edge with vertex i. This allows the
use of non-manifold meshes, and indeed we use internal edges on
some sequences to add a weak form of volume preservation; i.e.,
we tetrahedralize the template interior. Any internal vertices have
visibility flags (see below) permanently zeroed.

5.1 Energy function

Our goal in surface tracking is to determine, at time t, the 3D
positions of the model vertices Vt = {vti}ni=1, and global rota-
tion and translation Rt, tt. This will be achieved by running a
Gauss-Newton solver on a suitable energy function, using the values
(Vt−1,Rt−1, tt−1) from the previous time step as an initial esti-
mate. As each frame is processed otherwise independently, the t
superscripts are dropped below.

We are given as input a depth image d which maps 2D points u
to 3D world points using the sensor output and the known camera
calibration information, so d(u) ∈ R3. We also have data normals
n : R2 7→ R3 computed by Sobel filtering on the depth map. These
images are evaluated at non-integer locations using bilinear interpo-
lation, and the derivatives∇ud(u) and∇un(u) are therefore also
well-defined.

The energy function is a sum of data terms, which encourage every
visible model vertex to be as close as possible to the sampled data,
and regularizers which control the smoothness of deformations and
motion. Visibility is defined by a variable ηi associated with each
model vertex, and is determined statically before each Gauss-Newton
solve by rendering the model under the current parameters. In
practice this computes correct visibilities for the majority of data
points and a robust kernel in the energy handles the remainder.

5.1.1 Data terms

The data term measures the distance to the closest data point, and
is written with an explicit minimization over the corresponding 2D
image position u:

Epoint(V) = λpoint

n∑
i=1

ηi min
u
ψ

(
‖vi − d(u)‖

σd

)
, (2)

where σd is an estimate of sensor noise, and ψ is a robust kernel
similar to Tukey’s biweight, but with additional properties, described
below. In practice, including the closest-point search within the
energy gives a complicated energy surface, so we “lift” the inner
minimizers to become search parameters U = {ui}ni=1

Epoint(V,U) = λpoint

n∑
i=1

ηiψ

(
‖vi − d(ui)‖

σd

)
. (3)

Note that this is exact: Epoint(V) = minU Epoint(V,U). In essence,
we are trading complexity of the energy surface for a 5/3-fold in-
crease in the number of unknowns. It does not imply an iterated
closest point strategy of alternating minimization over V and U,
which is known to have poor convergence properties. Rather, it
suggests a simultaneous optimization over all unknowns, which is
particularly important near the optimum. Also, as will be shown
below, the new unknowns lead to a simple and sparse augmentation
of the system Jacobian, so that optimization runtime is only very
mildly affected by the increase in problem size. Although one could
use the values from the previous timestep as an initial estimate for U,
a more effective strategy is described in Sec. 5.3.

To further improve the properties of the energy, we adopt the com-
mon strategy of including a point-to-plane term

Eplane(V,U) = λplane

n∑
i=1

ηiψ

(
n(ui)

>(vi − d(ui))

σn

)
(4)

which allows incorrectly assigned correspondences to “slide” along
the surface, thus improving convergence. Again, σn is a noise level
estimate.

We further encourage vertices to preserve their RGB appearance
from frame to frame with a color term

Ecolor(V) = λcolor

n∑
i=1

ηiψ

(
‖Ii − I(π(vi))‖

σc

)
, (5)

where π is the projection from 3D to image coordinates, known from
camera calibration, and Ii = It−1(π(vt−1

i)) is a color attached to
each vertex from the previous timestep. In our implementation only
the intensity channel is used. Here σc is the noise level of the RGB
sensor.

5.1.2 Robust kernel

A further amelioration of the energy surface is obtained by rewriting
the non-convex robust kernel ψ(e) using a similar “lifting” tech-
nique as was used for the correspondences. As the wide variety of

−1 −0.5 0 0.5 1
0

0.5

1

−1 0 1 2
−0.5

0

0.5

1

1.5

2

2.5

a

b
c

m

−1 0 1 2

−3

−2

−1

0

1

2

3c d

Figure 4: Robust kernel (Sec. 5.1.2). (a) Our kernel ψ(e) (blue) has
similar shape to the standard Tukey’s biweight kernel (red). (b) A 2D
line fitting problem with two minima. Data points yi ≈ mxi + c. (c)
Energy landscape of f(m, c) =

∑
i ψ(yi−mxi−c) is complicated.

(d) 3D slice through (2+n) dimensional landscape of lifted function
F (m, c, w1, ..., wn) =

∑
i w

2
i (yi − mxi − c)2 + (1 − w2

i)
2 is

simpler. Minimization of lifted F found the global optimum on
82.4% of runs, in contrast to 43.0% on two-parameter f , which also
had 20.1% outright failures vs. 0% on lifted.

published robust kernels might indicate, the precise shape of ψ is
not of great importance, but it should typically have a standard form:
linear or quadratic for small e values, reducing to linear or constant
for larger e. We observe that the function

ψ(e) = min
w

(
2w2e2

τ2
+ (1− w2)2

)
=

{
e2

τ2
(2− e2

τ2
) if e2 < τ2

1 otherwise

has the shape in Fig. 4(a), which has the required properties. τ is a
width parameter, normally set to 1. Applying this in our framework
again uses the lifting trick, so that terms of the form

E(Θ) =
∑
i

ψ(fi(Θ)) =
∑
i

min
w

(
2w2fi(Θ)2 + (1− w2)2

)
become, when lifted to depend on parameters W = {wi}ni=1

E(Θ,W) = 2
∑
i

w2
i fi(Θ)2 +

∑
i

(1− w2
i)

2. (6)

Again, the number of parameters increases, but the error function is
more amenable to optimization (see also Fig. 4). Note that this is the
same weighting used in [Li et al. 2008], but the connection to robust
estimation was not made there. We avoid introducing separate W
vectors for each energy term by applying the robust kernel to sums
of terms per vertex. That is, we replace∑
α∈{point,plane,color}

λα
∑
i

ψ(fαi (Θ))→
∑
i

ψ

(√∑
α
λαfαi (Θ)2

)
where the fα are the residual terms in (3), (4), (5), so the robust
kernel is applied to the sum of the squared residuals, not to each
separately.

5.1.3 Shape regularizer

The geometric prior term Ereg forces local deformations of the sur-
face to be as close possible to isometry, and thus approximates elas-
tic deformation behavior. The as-rigid-as-possible (ARAP) frame-
work [Sorkine and Alexa 2007] measures deformation between a
pair of meshes V, V̂ as follows

D(V, V̂) = min
R1,...,Rn

n∑
i=1

∑
j∈Ni

‖(vi − vj)−Ri(v̂i − v̂j)‖2

= min
R

DARAP(V, V̂,R) (7)

In our energy, ARAP controls the deformation of the shape in the
current frame from the rigidly transformed initial template RV0 + t
as follows:

Ereg(V,R,R, t) = λregDARAP(V,RV0 + t,R) (8)

The distance measure is itself a minimization problem over n ro-
tations, and is typically solved via an alternating block coordinate
descent strategy. Again, we prefer to lift the inner minimization
parameters into a block R = {R1, ...,Rn}, and solve for them
simultaneously with all others in order to enjoy the superlinear
convergence of the Gauss-Newton method. Our implementation
parameterizes R by Euler angles, so the energy is more correctly
written Ereg(V,R(Φ)) where Φ is a vector of 3n angle parameters.
Notice that the global transformation parameters are not strictly nec-
essary here, because D(V, V̂) = D(V,RV̂ + t), but their inclusion
will improve our initial estimates, and ensures the Euler angles are
always parameterizing near-identity rotations, avoiding gimbal lock.

5.2 Energy minimization: Gauss-Newton core solver

To summarize the above, we wish to minimize, at every timestep,
the sum

E(Vt,U,W,Φ,R, t) = Epoint(V
t,U,W) (9)

+ Eplane(V
t,U,W) + Ecolor(V

t) + Ereg(V
t,R(Φ),R, t).

The main computational tool will be a Gauss-Newton solver. The
primary requirement for such a solver is that the energy function
be in the form of a sum of squared residuals, that is that if x is the
vector of unknown parameters, we have

E(x) =
∑
i

fi(x)2 = ‖f(x)‖2.

This form is ensured by the various lifting transformations described
above, noting that terms of the form ψ(‖e‖), which expand to in-
clude w2‖e‖2 = w2e21 + ..., are stacked into x as we.

At solver iteration k, a Gauss-Newton iteration step updates a pa-
rameter vector xk as

xk+1 = xk − h with J>Jh = J>f (10)

where J is the Jacobian of f evaluated at xk, with (i, j)th entry
Jij = ∂fi

∂xj
.

To compute h, we have to solve a linear system, which we do
iteratively using a preconditioned conjugate gradient (PCG) solver,
the essential computational unit of which is repeated multiplication
of the Jacobian by a vector. The key to real-time performance is
thus to implement routines for the computation of Jh (and J>h) as
efficiently as possible. This is enabled by exploiting the particular
sparsity structure of J , illustrated in Fig. 5. To make this structure
as sparse as possible, we implement a hybrid optimizer: the global
parameters R and t are estimated in an initial ICP step, and W is
updated in an outer loop. This means the core solver is optimizing
the 8n variables x = (V,U,Φ), giving the structure in Fig. 5.

5.2.1 GPU implementation of Jacobian multiplication

We never compute the Jacobian explicitly, but compute its entries
on-the-fly in the routines for Jh and J>h. This strategy, common
in CPU-based optimizers (e.g., see [Wilamowski and Yu 2010],
or the JacobMult parameter to MATLAB’s lsqnonlin), has less
computational overhead on the GPU [White et al. 2005], but does not
appear to be widely employed in the vision, graphics, and learning

⋱

⋱

⋮

𝑛
3

D
-p

o
si

ti
o

n
s

(𝐯
1
,…

,𝐯
𝑛
)

𝑛
2

D
-c
o
rr
.

(𝐮
1
,…

,𝐮
𝑛
)

𝑛
3

D
-r
o
ta
ti
o
n
s

(𝚽
1
,…

,𝚽
𝑛
)

3𝑛 ℰpoint

⋱

⋱

⋱

⋱

8
𝑛

p
ar

am
et

er
s

Energy term residuals

𝑛 ℰplane 𝑛 ℰcolor 6𝑒 ℰreg

Figure 5: Block structure of the (V,U,Φ) Jacobian (transposed).
The Jacobian is never stored explicitly; instead the products Jh and
J>h are computed on demand on the GPU.

literature, where many implementations appear to explicitly store an
(unstructured) Jacobian.

To multiply J and J> with a vector h, we use two computational
kernels. The first one multiplies a given row i of J with a given
vector h. According to the row i, the kernel determines which energy
term is used, which columns are not equal to zero, computes the non-
zero entries and immediately multiplies them with the appropriate
entries of h and sums them up.

The second kernel does the same for J>. Yet, in this kernel each row
corresponds to a parameter, so the kernel has to determine the non-
zero entries in the ith column of J and compute the scalar product.
By this, we can well exploit the sparsity of J , and the GPU vector
capabilities. Computing Jh or J>h requires only one kernel call
with 3n and 3n+ 2m threads, respectively.

As a further optimization, both kernels interpret the h as a vector of
3D floats. Furthermore, rows of J and J> are merged to 3D floats.
This allows us to map multiple operations to float3 vector arithmetic.

5.2.2 Preconditioned Conjugate Gradient on the GPU

As well as implementing Jacobian multiplication on the GPU, we
also implemented the PCG solver itself. In its loop, we evaluate the
matrix-vector product J>(Jh), which we can do very efficiently as
shown above, but also a number of other terms. A naive implementa-
tion would require 12 kernel calls in the inner loop, where the kernel
switches dominate computation. So instead we use a variant of the
fast PCG-solver described by Weber et al. [2013]. This solver re-
duces the number of kernel calls in the inner loop to three. However,
since in our case the system matrix is JTJ , we end up with four
kernel calls. We use block diagonal preconditioning. The inverses
of the diagonal blocks of J>J are precomputed in the initialization
stage of PCG, using a similar kernel to the Jacobian multipliers.

5.2.3 Energy minimization: Coarse-to-fine outer loop

The previous sections describe the energy minimization for the
model vertices at a single resolution. For both speed and accuracy,
a multi-scale optimizer is used. In an outer loop, the solver iterates
over the mesh hierarchy from coarse to fine. In its inner loop, it
optimizes for the optimal deformation on the current resolution as

described in Sec. 5.2. At the end of the inner loop, a prolongation
step transfers the solution on the current hierarchy level to the next
finer one as described by Sumner et al. [2007], using the weights
from Li et al. [2009]. The weights are precomputed at the time of
creation of the initial template model. We found that it was necessary
to apply prolongation not just to the model vertices V but also to
the rotation parameters Φ. The latter is performed by estimating
rotations at the new scale using the closed-form Kabsch algorithm
to solve (7) before starting Gauss-Newton. In conjunction with
this hierarchical solving strategy, a number of other continuation
strategies are used to improve speed and/or convergence. Each run
of the Gauss Newton solver is limited to 5 − 8 iterations. On the
finest hierarchy level, we apply an exponential average in order to
reduce temporal flickering. Note that this only affects visualization,
but not the optimization procedure.

The parameters which affect the location of energy minima are the
energy weights λpoint, λplane, λreg and the robust kernel width τ , and
their setting is discussed below. Typically λpoint = 0.2, λplane = 0.8
can be kept fixed, and the value of λreg is chosen to coarsely reflect
the amount of deformation in a given sequence. These settings are
for the finest scale of the hierarchy. To improve convergence at
the coarser scales, λreg is increased by a factor of 20, and τ by 10,
so that only gross outliers are rejected. Note that these parameters
affect only the rate of convergence, not the location of the energy
minimum, which is affected by rather fewer parameters (see next
paragraph). This can certainly mean that with different settings,
the model may or may not converge completely in one frame if the
object has undergone fast motion, but it will typically converge in a
number of frames, particularly if the object slows down (see Fig. 8)

5.3 Initialization: Correspondence finding

As mentioned above, initialization of Vt simply takes the value from
the previous frame, and initialization of Φ is to the parameters of
the identity rotation. The parameters U represent, for each model
vertex, the image location of the closest point to the vertex, and given
that d(u) may be quite non-smooth, a more careful initialization is
warranted. This is achieved by a simple local search in a window
around the previous frame’s estimate transformed by the global
transformation R, t:

uti = argmin
u∈Qi

‖R(vt−1
i) + t− dt(u)‖2

where the window Qi is πt(R(vt−1
i) + t) + [−24, 24]× [−24, 24].

For speed, this is computed in two stages: first checking only every
third pixel in Qi, then checking all pixels in a 5× 5 window around
the sub-sampled answer. The GPU implementation uses an efficient
parallel block reduction in shared memory.

At this stage, we can also update the visibility flags {ηi}ni=1 to dis-
card correspondences to data points that lie close to the boundaries
to the background. We also threshold the orientation difference
between data point (provided by finite differencing) and model ver-
tex normals, and impose a maximal distance threshold between
associated point pairs.

5.4 Detail Integration

The result of energy minimization is a mesh at the second-finest
resolution which matches the data, but does not feature fine-scale
details, such as folds or wrinkles, that may be present in the current
depth data. Because such transient surface details cannot be built
into the initial template model, we prolong the fitted result to the
finest hierarchy level and add the missing detail by computing in the
least-square-sense optimal per-vertex scalar displacements di along
the vertex normal.

Since the mesh is already very close to the measured data, the resid-
ual detail displacements can be assumed to be small. Therefore,
the following algorithm can be used that fulfills our speed and plau-
sibility requirements. We assume a thin shell deformation model
whose minimal energy deformation state is found by minimizing
the stretching and bending energies expressed as the differences in
the first and second fundamental forms [Botsch and Sorkine 2008].
The thin shell deformation energy is simplified by replacing the
change of first and second fundamental forms by changes of first
and second order partial derivatives of the 3D displacement func-
tion r on the surface. This deformation energy is minimized by
variational calculus, and linearization yields the following Euler
Lagrange equations [Botsch and Sorkine 2008]:

−λs∆r+λb∆
2r = 0 (11)

with ∆r = div∇r = ruu + rvv

∆2r = ruuuu + 2ruuvv + rvvvv

Here, ru, ruu, and ruuuu are the first, second, and fourth partial
derivatives of r w.r.t the surface parameterization of the template
mesh; v-directions are defined analogously. λs and λb define stretch-
ing and bending resistance, respectively. To obtain the target dis-
placements for each vertex, we find the closest intersection point in
the input data by raymarching in normal direction. The resulting in-
tersection point is further refined using a simple bisection approach.
We incorporate the resulting target displacements as soft-constraints
into the optimization problem. In our case, r is the residual displace-
ment field on the mesh, and can be found by minimizing Eq. 11
under the soft constraints using the fast GPU-based preconditioned
conjugate gradient solver from Sec. 5.2.1. As initial guess for the
iterative solve, we use the computed displacements for the previous
frame to warm start the optimizer leading to fast convergence. Given
the noise in the input data, we employ a temporal averaging scheme,
similar to Li et al. [Li et al. 2009], based on exponential weighting to
compute the final displacements. This nicely removes noise, while
still being responsive to changes in transient surface detail.

6 Results

Now that we have described our system in detail, in this section we
present a variety of results from live capture, ground truth experi-
ments, and comparisons to existing work.

6.1 Live Non-rigid Capture

Our system is fully implemented on the GPU using CUDA. Results
of live scene captures for our test scenes are shown in Figures 1 and
6 as well as in the supplementary material. It is important to stress
that all these sequences were captured online and in real-time, in-
cluding depth estimation and non-rigid reconstruction. Further, these
sequences are tracked over long time periods comprising several
minutes.

We captured a variety of diverse non-rigidly moving and deform-
ing objects. The table in Fig. 6 shows the number of vertices in
the different hierarchy levels, and indicates whether a tetrahedral-
ized version of the mesh has been used to incorporate weak volume
constraints. In the FACE sequence, we show how our system can gen-
erate compelling reconstructions of faces. Our results convey subtle
expressions including detailed skin deformations and wrinkles. Our
system also models large deformations captured during actions such
as talking, frowning, and smiling, and demonstrates the benefits of
modeling the fine facial deformations. This is in contrast to existing
real-time methods based on parametric morphable models [Li et al.
2013b; Weise et al. 2011; Weise et al. 2009b], which often fail to
convey facial details.

However, our system is also able to reconstruct many other types
of scenes beyond faces. In the HAND and UPPER BODY sequence,
we show two challenging sequences which exhibit large amounts of
occlusions when the user either places the hand in front of his/her
body or significantly bends the fingers. Despite these occlusions
our system is able to track non-rigid motions, although extreme
poses and rapid motions can cause errors. In the TEDDY and BALL
sequence, we finally show how our method can generalize to non-
human tracking and reconstruction.

6.2 Performance

We measured performance of our entire non-rigid tracking pipeline
including run-time overhead on an Intel Core i7 3.4GHz CPU, 16GB
of RAM, and a single NVIDIA GeForce GTX780. The average
timing (see also Fig. 6) among all test scenes is 33.1ms (i.e., 30.2fps)
with 4.6ms for preprocessing (computing derivatives of normals,
depth, and color data) (14% of the overall pipeline), 2.93ms (8.9%)
for rigid ICP pose estimation (on average 4 iterations), 21.3ms
(64%) for the non-rigid fitting on the coarse and medium mesh level
(2× 5 Gauss-Newton iterations, each with 10 PCG iterations), and
3.36ms (10%) for fine detail integration (10 iteration steps). On top
of this, the timings of our stereo matcher are 17ms, or alternatively
26ms with variational refinement enabled. Note that in our current
implementation we run the depth estimation on a separate second
GPU, which allows for a complete runtime of 33ms (30fps) for our
full pipeline by introducing a delay of one frame.

6.3 Applications

This type of non-rigid capture enables many compelling applications
as shown in Fig. 7. In the RE-TARGET sequence we demonstrate a
real-time, motion re-targeting scenario, where the user controls two
avatars by transferring detailed non-rigid motions and expressions.
Real-time avatar re-targeting can lead to new scenarios for gaming
or video conferencing, where more detailed shape and motion can
be reconstructed resulting in more expressive user experiences. We
use a simple re-targeting method by manually specifying a sparse set
of per-vertex correspondences between our reconstructed template
and the new target mesh. We use these correspondences to drive
the animation using mesh skinning. Although this simple approach
produces compelling results, more advanced re-targeting techniques
such as [Sumner and Popović 2004] could easily be applied. Our
live system can also be used for performance and motion capture in
home and semi-professional movie and animation production. In the
RE-TEXTURE sequence (Fig. 7) we demonstrate how the estimation
of detailed deformations enables convincing augmented reality ap-
plications such as pasting digital content onto non-rigidly deforming
physical objects. Application scenarios include virtual clothing and
makeup. Our deformation regularization prevents geometric drift
which keeps texturing locally stable.

6.4 Evaluation

Fitting and Regularization Error Fig. 8 shows the fitting error
with respect to the iteration count over several frames of the exam-
ples FACE, HAND, and BALL. The spikes in the graph coincide
with the arrival of new input frames. To examine convergence, we
perform 8 Gauss-Newton iteration steps per frame on a single hi-
erarchy level, with 20 PCG iterations in the inner loop. It can be
seen that the registration converges quickly and in most of the cases,
convergence is reached in less than 5 Gauss-Newton iterations.

The energy of the ARAP regularizer for example scenes is provided
in Fig. 9. This allows us to localize the regions undergoing locally
non-rigid deformations in real-time. Interesting areas of future

work include leveraging the ARAP residuals to either: 1) refine
the template model in these regions (akin to the method of Li et
al. [2009]) in order to adapt the deformation model to the seen
deformations, or 2) use this residual error to localize user interactions
with objects. For example, in the ball sequence we clearly identify
where the user is touching and pressing the ball. This leads to the
possibility of making such physical objects interactive and enables
new types of user experiences, e.g., for gaming.

6.5 Comparisons

In Fig. 10, we compare results obtained with our system with ground
truth data. To this end, we used data from [Valgaerts et al. 2012]. We
generate synthetic depth maps by rendering the mesh from a single
view. Our method is applied using eight Gauss-Newton iteration
steps with 20 PCG iterations in the inner loop. The figure compares
renderings of the original mesh and our reconstruction, as well as
plots of the deviation for three frames of the animation, where red
corresponds to a fitting error of 3mm. This shows that our algorithm
can match the facial expression and fine scale details exhibited in
this sequence. The method of Valgaerts et al. is an offline technique,
with has a runtime of about 9 minutes per frame on the CPU. Our
results show qualitatively similar results but with a system that is
about 4 orders of magnitude faster, and with the ability to track a
variety of general objects beyond faces.

Fig. 11 shows a comparison with the results of Li et al. [2009].
Both sequences were generated from the same input data. In both
cases the reconstructed mesh has 70k vertices. Whereas Li’s method
requires more than one minute per frame on the CPU1, our novel
GPU pipeline runs at almost 30Hz and is thus more than three orders
of magnitude faster.

6.6 Other Reconstruction Scenarios

Our technique can also be applied to multi-view setups. In Fig. 12,
we show reconstructions obtained with our method from the data
sets SAMBA and SQUAT from [Vlasic et al. 2008]. The figure also
shows a reconstruction of the GHOST data set [Vlasic et al. 2009],
which demonstrates our ability to deal with motions that cannot be
parameterized by a skeleton. For multiple views, our reconstruction
pipeline has to perform more work in the preprocessing stage of
the pipeline, processing the data from each camera separately. We
assign each vertex to the best suited camera, based on visibility and
orientation, after which we can perform surface fitting within our
presented fitting pipeline, which is independent of the number of
cameras.

Finally, we also illustrate results of our method using a regular Kinect
camera (see also Fig. 12). Note that while our method produces far
higher quality results with our stereo setup (for close ranges), the
Kinect results could still be used in interactive applications, where
quality is perhaps a secondary requirement, or where larger distance
reconstruction is desired. This provides the exciting possibility of
building both new multi-camera systems for performance capture
using our method, as well as the possibility to use consumer depth
cameras for certain interactive scenarios.

7 Limitations

Even though we demonstrated one of the first methods for real-time
non-rigid reconstruction from a single view, this problem is still
ill-posed. In particular, the restriction to a single view leads to large
occlusions resulting in missed correspondences. At each time step,
typically less than half of the tracked object is visible [Li et al. 2009],

1Timings by Li et al. [2009]; expected to run faster on current CPUs.

FACE sequence

HAND sequence BALL sequence

TEDDY sequence UPPER BODY sequence

Prepro- Rigid Non-Rig. Lin. #vert. #vert. #vert. tetr.
cess Fit Fit Fit Misc Sum coarse medium fine mesh #frames

FACE 4.65 3.22 20,9 2.46 1.16 32.4 1.2k 2.5k 20k no 1490
HAND 4.60 2.62 20,6 2.70 0.79 31.3 0.6k 2.5k 20k yes 587
BALL 4.66 3.12 19,5 4.20 1.16 32.6 1.2k 2.5k 40k no 813

TEDDY 4.58 2.84 19,0 4.69 0.80 31.9 1.0k 2.5k 40k no 599
BODY 4.64 2.85 26.3 2.73 0.80 37.3 1.1k 2.5k 20k yes 1500
Avg. 4.62 2.93 21.3 3.36 0.94 33.1

Figure 6: A number of different deformable objects and the corresponding timings during a live session.

and the behavior of unobserved regions has to be inferred through
regularization constraints. Offline methods tackle this problem by
using sophisticated correspondence finding mechanisms coupled
with a slow relaxation of the model rigidity during the optimization
process in order to avoid local minima in the energy landscape.
Given the tight real-time constraint (33ms/frame) of our approach,
we rely on temporal coherence of the RGB-D input stream making
the processing at 30Hz a necessity. If the frame rate is too low, or
frame-to-frame motion is too large, our method might lose tracking.
Similar problems may be caused by occluded regions, sparse/noisy
input data, or a violation of the topological prior. Offline methods,
e.g., [Li et al. 2008; Li et al. 2009; Beeler et al. 2011], fail in similar
cases as ours; however, they are more stable due to a larger time
budget that allows for more elaborate strategies, such as global
optimization, re-meshing of the deformation template, or anchor
frames. In the following, we address specific failure cases in more
detail and give ideas on how to improve in these situations.

Topological Changes Most template-based methods, no matter
if they are online or offline, share our inability to robustly and ef-
ficiently handle topological changes. Only a few methods handle
such situations [Wand et al. 2009], but at computation times that
are far from real-time performance. A semantically incorrect prior
counteracts the actual deformation (e.g., opening the mouth) which
inevitably leads to surface sliding. While one could imagine the tem-
plate to be modified at runtime, it would cause severe optimization

instabilities and add significant computational complexity, which is
(currently) infeasible in real-time. Similar problems occur if object
parts not represented in the template are revealed during surface
tracking (e.g., teeth). In scenarios where the topological assumption
is satisfied (e.g., hand, boxer, teddy, ball), our method allows for
robust tracking without surface sliding (see Fig. 7).

Sparse Input and Occlusions Sparse input data and occlusions
are inherent problems of a single-view camera setup. This causes
missing correspondences, and thus increases the importance of reg-
ularization constraints. In these regions, there is no guarantee that
deformations conform to the real-world, since we do not consider
material or statistical shape priors. Methods focusing on a single
domain, such as faces [Weise et al. 2011; Li et al. 2013b], are more
robust towards occlusions since they have less degrees of freedom;
however, they are less general and require a significant amount of
training data. If our method misses large deformations due to oc-
clusions, the temporal coherence assumption is violated once these
regions become visible. This might lead to tracking instabilities or
slow convergence. Given the tight real-time constraint, we can only
afford searching correspondences on each level of the hierarchical
solver independently. In theory, we would always like to consider
alignment at the highest resolution, even when processing lower
hierarchy levels; however, this comes at additional costs. Another
problem of our vertex-to-input correspondence search is the possi-
bility of undersampling the input depth data, which might lead to

Figure 7: Applications for live non-rigid capture. Left: detailed facial expressions are re-targeted. Right: spatio-temporal coherent re-texturing
of template meshes for the same input sequence.

Figure 8: Convergence of the non-rigid deformation. The spikes correspond to new
frames. Note convergence “through” the new-frame spike on the last frame of “Face”.

Figure 9: Energy of the ARAP regularizer at each
vertex for the BALL example.

Fi
tti

ng
 e

rr
or

 (m
m

)

0

0.5

1

1.5

2

2.5

3

Figure 10: Ground truth comparison. Left: detailed input
data. Middle: reconstruction from synthetic depth maps.
Right: fitting error.

Figure 11: Comparison of our real-time reconstruction (top row) with offline
reconstructions [Li et al. 2009] while only using depth data (i.e., no color
term).

Figure 12: SAMBA, SQUAT: Reconstructions of synthetic multi-view input (8 depth cameras). Input (top row), our reconstruction (middle
row), error (bottom row) with red=30mm. The right column of SQUAT shows the result at the end of the animation after four squats. GHOST:
also reconstructed from synthetic multi-view input (8 cameras). Top row: input, bottom row: reconstruction. KINECT HAND & FACE: Three
frames of a sequences reconstruction using a single Kinect sensor.

Figure 13: Limitations. Left: tracking instability due to sparse input leading to a slight misalignment of the paper. Right: tracking of the
puppet’s arm fails due to large and fast motion. However, our method recovers at the end of the sequence. Note, that our approach is less stable
in these sequences, compared to the ones shown in Fig. 6, since no color data is used.

misalignments; see Fig. 13 (left). Ideally, one would prefer explain-
ing all input data instead. Again, this is currently infeasible due to
computational limitations.

Fast and Large Deformation A typical strategy to deal with fast
and large deformations, is to incrementally relax the model rigidity
in order to avoid local minima in the energy landscape. There-
fore, offline approaches spend significant effort on slowly relaxing
regularization constraints using many iterations. In our real-time
scenario, we can only handle a limited amount of frame-to-frame
deformation. In order to process reasonably fast motion, we enforce
high temporal coherence leveraging our 30Hz input RGB-D stream.
If the temporal coherence assumption is violated, tracking might
fail; e.g., see Fig. 13 (right). However, note that our method can
recover in most cases. In the future, we also expect RGB-D cameras
to have higher frame rates, thus making faster motion possible.

8 Conclusions

In this paper, we have introduced what we believe to be the first
‘general purpose’ non-rigid reconstruction system that provides real-
time performance, several orders of magnitude faster than general
methods, without using a specific ‘baked in’ kinematic or shape
model. Instead our system allows users to acquire a template online,
and use this for live non-rigid reconstructions. Our system is simple
to use and self-contained, with a single lightweight stereo camera
setup, moving closer to commodity or consumer use. Addition-
ally, in terms of reconstructed geometric detail, our method also
narrows the gap between offline and online methods. Our system
attempts to hit a ‘sweet spot’ between methods that can reconstruct
general scenes, and techniques that rely on a stronger shape prior
(e.g., a blendshape face model or body or hand skeleton), which
are beginning to demonstrate real-time performance. As shown in
the results section, the simplicity of our method and its real-time
performance does not significantly compromise the overall recon-
struction quality. Our work brings us a step closer to high-quality
real-time performance capture systems for consumer scenarios in-
cluding gaming, home and semi-professional movie production, and
human-computer interaction.

Acknowledgements

We would like to thank Angela Dai for the video voice over, Frank
Bauer for help with renderings, and Hao Li for comparison data. This
research was mainly conducted at Microsoft Research Cambridge,
and co-funded by the German Research Foundation (DFG), grant
GRK-1773 Heterogeneous Image Systems, and the ERC Starting
Grant 335545 CapReal.

References

BEELER, T., HAHN, F., BRADLEY, D., BICKEL, B., BEARDSLEY,
P., GOTSMAN, C., SUMNER, R. W., AND GROSS, M. 2011.
High-quality passive facial performance capture using anchor
frames. ACM TOG (Proc. SIGGRAPH) 30, 4, 75.

BLANZ, V., AND VETTER, T. 1999. A morphable model for the
synthesis of 3D faces. In Proc. SIGGRAPH, 187–194.

BLEYER, M., RHEMANN, C., AND ROTHER, C. 2011. Patchmatch
stereo: Stereo matching with slanted support windows. In Proc.
BMVC, vol. 11, 1–11.

BOJSEN-HANSEN, M., LI, H., AND WOJTAN, C. 2012. Tracking
surfaces with evolving topology. ACM Trans. Graph. 31, 4, 53.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational
surface deformation methods. IEEE Trans. Vis. Comp. Graph 14,
1, 213–230.

BRADLEY, D., POPA, T., SHEFFER, A., HEIDRICH, W., AND
BOUBEKEUR, T. 2008. Markerless garment capture. ACM TOG
(Proc. SIGGRAPH) 27, 3, 99.

BROWN, B. J., AND RUSINKIEWICZ, S. 2007. Global non-rigid
alignment of 3D scans. ACM TOG 26, 3, 21–30.

CAGNIART, C., BOYER, E., AND ILIC, S. 2010. Free-form mesh
tracking: a patch-based approach. In Proc. CVPR.

CAO, C., WENG, Y., LIN, S., AND ZHOU, K. 2013. 3D shape
regression for real-time facial animation. ACM TOG 32, 4, 41.

CHEN, J., IZADI, S., AND FITZGIBBON, A. 2012. Kinêtre: ani-
mating the world with the human body. In Proc. UIST, 435–444.

DE AGUIAR, E., STOLL, C., THEOBALT, C., AHMED, N., SEIDEL,
H.-P., AND THRUN, S. 2008. Performance capture from sparse
multi-view video. ACM TOG (Proc. SIGGRAPH) 27, 1–10.

DOU, M., FUCHS, H., AND FRAHM, J.-M. 2013. Scanning and
tracking dynamic objects with commodity depth cameras. In
Proc. ISMAR, 99–106.

GALL, J., STOLL, C., DE AGUIAR, E., THEOBALT, C., ROSEN-
HAHN, B., AND SEIDEL, H.-P. 2009. Motion capture using
joint skeleton tracking and surface estimation. In Proc. CVPR,
1746–1753.

GARRIDO, P., VALGAERT, L., WU, C., AND THEOBALT, C. 2013.
Reconstructing detailed dynamic face geometry from monocular
video. ACM TOG (Proc. SIGGRAPH Asia) 32, 6, 158.

HELTEN, T., BAAK, A., BHARAJ, G., MULLER, M., SEIDEL, H.-
P., AND THEOBALT, C. 2013. Personalization and evaluation of
a real-time depth-based full body tracker. In Proc. 3DV, 279–286.

HERNÁNDEZ, C., VOGIATZIS, G., BROSTOW, G. J., STENGER,
B., AND CIPOLLA, R. 2007. Non-rigid photometric stereo with
colored lights. In Proc. ICCV, 1–8.

IZADI, S., KIM, D., HILLIGES, O., MOLYNEAUX, D., NEW-
COMBE, R., KOHLI, P., SHOTTON, J., HODGES, S., FREEMAN,
D., DAVISON, A., AND FITZGIBBON, A. 2011. KinectFusion:
Real-time 3D reconstruction and interaction using a moving depth
camera. In Proc. UIST, 559–568.

KOLB, A., BARTH, E., KOCH, R., AND LARSEN, R. 2009. Time-
of-flight sensors in computer graphics. In Proc. Eurographics
State-of-the-art Reports, 119–134.

LI, H., SUMNER, R. W., AND PAULY, M. 2008. Global correspon-
dence optimization for non-rigid registration of depth scans. In
Proc. SGP, Eurographics Association, 1421–1430.

LI, H., ADAMS, B., GUIBAS, L. J., AND PAULY, M. 2009. Robust
single-view geometry and motion reconstruction. ACM TOG 28,
5, 175.

LI, H., VOUGA, E., GUDYM, A., LUO, L., BARRON, J. T., AND
GUSEV, G. 2013. 3D self-portraits. ACM TOG 32, 6, 187.

LI, H., YU, J., YE, Y., AND BREGLER, C. 2013. Realtime facial
animation with on-the-fly correctives. ACM Transactions on
Graphics 32, 4 (July).

LIAO, M., ZHANG, Q., WANG, H., YANG, R., AND GONG, M.
2009. Modeling deformable objects from a single depth camera.
In Proc. ICCV, 167–174.

MITRA, N. J., FLÖRY, S., OVSJANIKOV, M., GELFAND, N.,
GUIBAS, L. J., AND POTTMANN, H. 2007. Dynamic geometry
registration. In Proc. SGP, 173–182.

NEWCOMBE, R. A., IZADI, S., HILLIGES, O., MOLYNEAUX, D.,
KIM, D., DAVISON, A. J., KOHLI, P., SHOTTON, J., HODGES,
S., AND FITZGIBBON, A. 2011. KinectFusion: Real-time dense
surface mapping and tracking. In Proc. ISMAR, 127–136.

NIESSNER, M., ZOLLHÖFER, M., IZADI, S., AND STAMMINGER,
M. 2013. Real-time 3D reconstruction at scale using voxel
hashing. ACM TOG 32, 6, 169.

OIKONOMIDIS, I., KYRIAZIS, N., AND ARGYROS, A. A. 2011.
Efficient model-based 3D tracking of hand articulations using
Kinect. In Proc. BMVC, 1–11.

PRADEEP, V., RHEMANN, C., IZADI, S., ZACH, C., BLEYER,
M., AND BATHICHE, S. 2013. MonoFusion: Real-time 3D
reconstruction of small scenes with a single web camera. In Proc.
ISMAR, 83–88.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible surface
modeling. In Proc. SGP, 109–116.

STARCK, J., AND HILTON, A. 2007. Surface capture for
performance-based animation. Computer Graphics and Applica-
tions 27, 3, 21–31.

SUMNER, R. W., AND POPOVIĆ, J. 2004. Deformation transfer for
triangle meshes. In ACM SIGGRAPH 2004 Papers, ACM, New
York, NY, USA, SIGGRAPH ’04, 399–405.

SUMNER, R. W., SCHMID, J., AND PAULY, M. 2007. Embedded
deformation for shape manipulation. ACM TOG 26, 3, 80.

TAYLOR, J., SHOTTON, J., SHARP, T., AND FITZGIBBON, A.
2012. The vitruvian manifold: Inferring dense correspondences
for one-shot human pose estimation. In Proc. CVPR, 103–110.

TEVS, A., BERNER, A., WAND, M., IHRKE, I., BOKELOH, M.,
KERBER, J., AND SEIDEL, H.-P. 2012. Animation cartography-
intrinsic reconstruction of shape and motion. ACM TOG 31, 2,
12.

THEOBALT, C., DE AGUIAR, E., STOLL, C., SEIDEL, H.-P., AND
THRUN, S. 2010. Performance capture from multi-view video. In
Image and Geometry Processing for 3D-Cinematography, R. Ron-
fard and G. Taubin, Eds. Springer, 127ff.

TONG, J., ZHOU, J., LIU, L., PAN, Z., AND YAN, H. 2012.
Scanning 3D full human bodies using Kinects. TVCG 18, 4,
643–650.

VALGAERTS, L., WU, C., BRUHN, A., SEIDEL, H.-P., AND
THEOBALT, C. 2012. Lightweight binocular facial perfor-
mance capture under uncontrolled lighting. ACM TOG (Proc.
SIGGRAPH Asia) 31, 6 (November), 187.

VLASIC, D., BARAN, I., MATUSIK, W., AND POPOVIĆ, J. 2008.
Articulated mesh animation from multi-view silhouettes. ACM
TOG (Proc. SIGGRAPH).

VLASIC, D., PEERS, P., BARAN, I., DEBEVEC, P., POPOVIC, J.,
RUSINKIEWICZ, S., AND MATUSIK, W. 2009. Dynamic shape
capture using multi-view photometric stereo. ACM TOG (Proc.
SIGGRAPH Asia) 28, 5, 174.

WAND, M., ADAMS, B., OVSJANIKOV, M., BERNER, A.,
BOKELOH, M., JENKE, P., GUIBAS, L., SEIDEL, H.-P., AND
SCHILLING, A. 2009. Efficient reconstruction of nonrigid shape
and motion from real-time 3D scanner data. ACM TOG 28, 15.

WASCHBÜSCH, M., WÜRMLIN, S., COTTING, D., SADLO, F.,
AND GROSS, M. 2005. Scalable 3D video of dynamic scenes. In
Proc. Pacific Graphics, 629–638.

WEBER, D., BENDER, J., SCHNOES, M., STORK, A., AND FELL-
NER, D. 2013. Efficient gpu data structures and methods to
solve sparse linear systems in dynamics applications. Computer
Graphics Forum 32, 1, 16–26.

WEI, X., ZHANG, P., AND CHAI, J. 2012. Accurate realtime
full-body motion capture using a single depth camera. ACM TOG
31, 6 (Nov.), 188.

WEISE, T., WISMER, T., LEIBE, B., , AND GOOL, L. V. 2009.
In-hand scanning with online loop closure. In IEEE International
Workshop on 3-D Digital Imaging and Modeling.

WEISE, T., LI, H., GOOL, L. V., AND PAULY, M. 2009. Face/off:
Live facial puppetry. In Proceedings of the 2009 ACM SIG-
GRAPH/Eurographics Symposium on Computer animation (Proc.
SCA’09), Eurographics Association, ETH Zurich.

WEISE, T., BOUAZIZ, S., LI, H., AND PAULY, M. 2011. Realtime
performance-based facial animation. ACM TOG 30, 4, 77.

WEISS, A., HIRSHBERG, D., AND BLACK, M. J. 2011. Home
3D body scans from noisy image and range data. In Proc. ICCV,
1951–1958.

WHITE, B. S., MCKEE, S. A., DE SUPINSKI, B. R., MILLER,
B., QUINLAN, D., AND SCHULZ, M. 2005. Improving the
computational intensity of unstructured mesh applications. In
Proc. ACM Intl. Conf. on Supercomputing, 341–350.

WILAMOWSKI, B. M., AND YU, H. 2010. Improved computation
for levenberg-marquardt training. IEEE Trans. Neural Networks
21, 6, 930–937.

WU, C., STOLL, C., VALGAERTS, L., AND THEOBALT, C. 2013.
On-set performance capture of multiple actors with a stereo cam-
era. ACM TOG 32, 6, 161.

YE, G., LIU, Y., HASLER, N., JI, X., DAI, Q., AND THEOBALT,
C. 2012. Performance capture of interacting characters with
handheld kinects. In Proc. ECCV. Springer, 828–841.

ZENG, M., ZHENG, J., CHENG, X., AND LIU, X. 2013. Template-
less quasi-rigid shape modeling with implicit loop-closure. In
Proc. CVPR, 145–152.

