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PABLO GARRIDO and MICHAEL ZOLLHÖFER and DAN CASAS and LEVI VALGAERTS
Max-Planck-Institute for Informatics
and
KIRAN VARANASI and PATRICK PÉREZ
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Fig. 1. Test Sequences: From left to right. ARNOLD YOUNG, ARNOLD

OLD, OBAMA, BRYAN, SUBJECT1, SUBJECT2, SUBJECT3, SUBJECT4 and
SUBJECT5.

1. USED TEST SEQUENCES

We evaluated our approach on 9 different sequences, shown in
Figure 1. They consist of five videos (SUBJECT11, SUBJECT22,
SUBJECT33, SUBJECT44, SUBJECT55) captured indoors and out-
doors under unknown and general lighting, and four legacy videos
(ARNOLD YOUNG6, ARNOLD OLD7, OBAMA8, BRYAN9) freely
available on the Internet and downloaded from YouTube.

ARNOLD YOUNG. An interview discussing the “Predator”
movie launch. We used a subset consisting of 1489 frames. The
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original video has a resolution of 480× 360 pixels. We processed
the video at its original full resolution.

ARNOLD OLD. Arnold Schwarzenegger’s message for
DECC’s Energy Efficiency Mission Launch. We used a subset
consisting of 1000 frames. The original video has a resolution of
1280× 720 pixels. We processed the video at its original full reso-
lution.

OBAMA. In this greeting address, president Obama commemo-
rates Independence Day on the 4th of July. We used a subset consist-
ing of 961 frames. The original video has a resolution of 1280×720
pixels. We processed the video at its original full resolution.

BRYAN. This video shows the actor Bryan Lee Cranston talking
about the end of his journey with the TV series “Breaking Bad”. We
used a subset consisting of 702 frames. The original video has a
resolution of 640×360 pixels. We processed the video at its original
full resolution.

SUBJECT1. This is a studio sequence captured indoors and em-
ployed in the paper [Valgaerts et al. 2012]. A stereo reconstruction
of this sequence is available. The sequence consists of 714 frames
and has a resolution of 1088× 1920 pixels. We downsampled the
images to half the resolution for tracking and use the full resolution
in all other steps.

SUBJECT2. This is a studio sequence captured indoors and used
in the paper [Garrido et al. 2013]. There is an audio channel avail-
able. This sequence consists of 2000 frames and has a resolution
of 1088 × 1920 pixels. We downsampled the images to half the
resolution for tracking and use the full resolution in all other steps.

SUBJECT3. This is a studio sequence captured indoors and
employed in the paper [Beeler et al. 2011]. The actual capture setup
consists of 6 high-quality cameras, one recording the actor from
a frontal view. This sequence consists of 347 frames and has a
resolution of 864 × 1174 pixels. We downsampled the images to
half the resolution for tracking and use the full resolution in all other
steps.

SUBJECT4. This is an outdoor sequence employed in the paper
[Garrido et al. 2013] (and also in [Shi et al. 2014]). In their capture
setup, a GoPro Hero 3 camera was used to record the actor from
a frontal view. This sequence consists of 651 frames and has a
resolution of 1920× 1080 pixels. We downsampled the images to
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Fig. 2. Parametric model vs. personalized texture map: In contrast to the low
dimensional parametric face model, the automatically computed personalized
texture map captures fine-scale albedo variations.

half the resolution for tracking and use the full resolution in all other
steps.

SUBJECT5. This is a cluttered scene captured outdoors and
employed in the paper [Bermano et al. 2014]. This sequence consists
of 806 frames and has a resolution of 1920 × 1080 pixels. We
downsampled the images to half the resolution for tracking and use
the full resolution in all other steps.

2. PARAMETRIC MODEL VS. PERSONALIZED
TEXTURE

The automatically computed personalized texture map captures more
fine-scale albedo variations than the low dimensional parametric
model, see Fig. 2. Note the detail around the eyes and the nice mouth
shape. Here Kr = 160 principal components have been used to
represent the surface albedo in the parametric face model.

3. VALIDATION

To quantify the influence of the regularization in the (sparse) ridge
regression of the medium- and fine-scale layer, we compared sev-
eral regressors learned with different ridge regression parameters
λ by measuring the geometric prediction error. To this end, we em-
ployed two test sequences (SUBJECT1 and SUBJECT2) and learned
a regressor for different values of λ. As training data, we used the
first half of tracked sequences. To test the accuracy, we predicted
the deformation of the medium-scale layer τ̂ and fine-scale layer
p̃ using the estimated blendshape weights on the second half of
the tracked sequences. The prediction error has been computed as
the Euclidean distance of every predicted 3D vertex position to its
corresponding tracked 3D position. The average prediction error

Table I. Average prediction error (medium-scale) on two sequences.
Prediction error (in mm)

Sequence λ = 0.25 λ = 0.5 λ = 1.0 λ = 1.5

SUBJECT1 0.98 ± 0.18 0.96 ± 0.17 0.95 ± 0.17 0.96 ± 0.17
SUBJECT2 0.87 ± 0.17 0.87 ± 0.17 0.87 ± 0.16 0.88 ± 0.16

Overall 0.93 ± 0.18 0.92 ± 0.17 0.91 ± 0.17 0.92 ± 0.17

Table II. Average prediction error (fine-scale) on two sequences.
Prediction error (in mm)

Sequence λ = 0.1 λ = 0.25 λ = 0.5 λ = 1.0

SUBJECT1 0.30 ± 0.03 0.30 ± 0.03 0.29 ± 0.03 0.29 ± 0.03
SUBJECT2 0.53 ± 0.07 0.53 ± 0.06 0.54 ± 0.06 0.54 ± 0.05

Overall 0.42 ± 0.05 0.42 ± 0.05 0.42 ± 0.05 0.42 ± 0.04

of the medium-scale and fine-scale detail layer over the two test
sequences can be found in Tables I and II.

As it can be observed, the lowest prediction error of the medium-
scale layer is obtained by using λ = 1.0. On the other hand, the
prediction error of the fine-scale layer stays mostly constant when
increasing λ, but increasing the regularizer tends to over-smooth
the results. This means that low values of λ result in more detailed,
but slightly more noisy predictions due to extrapolation. Empirical
experiments showed that the noise is visually negligible and λ = 0.1
achieves good results.

4. ADDITIONAL COMPARISONS

4.1 Comparison to Performance Capture
Approaches

In this section we compare the reconstruction quality of our monoc-
ular approach to existing multi-view and monocular facial perfor-
mance capture systems.

Comparison to [Beeler et al. 2011]. Fig. 3 shows a compar-
ison to the high-quality off-line performance capture method of
Beeler et al. [2011]. This method requires a controlled setup with 6
high-quality cameras and controlled in-studio lighting to perform a
variant of multi-view stereo in combination with a mesoscopic detail
augmentation step. Furthermore, the approach does not construct a
face rig from the tracked data. In contrast, our approach is based on
a single monocular video under general lighting as input and is ca-
pable of achieving a reconstruction quality that comes close to their
approach. Besides, our approach reconstructs a fully-modifiable face
rig (see additional supplementary video).

Comparison to [Garrido et al. 2013] and [Shi et al. 2014].
Our approach attains reconstructions of higher-quality than those
of Garrido et al. [2013] and Shi et al. [2014], both on the coarse
geometry and on the fine-scale level, see Fig. 4. Note that our method
can also handle strong out-of-plane head rotations, as in [Shi et al.
2014], while preserving the face details. We remark that none of
these state-of-the-art approaches can reconstruct a highly-detailed
3D face rig as we do.
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Fig. 3. State-of-the-art comparison to the multi-view in-studio approach by [Beeler et al. 2011]: Our monocular approach, which reconstructs detailed geometry
from a single video under general lighting, comes close in reconstruction quality to that of Beeler et al.’s method which requires a professional setup with 6

high-quality cameras.

Fig. 4. State-of-the-art comparison to the approach by [Shi et al. 2014] and
[Garrido et al. 2013]: Our monocular approach obtains better reconstruction
quality than that of Shi et al.’s and Garrido et al.’s method. Note the better
tracking on the coarse geometry as well as on the fine-scale detail layer.

Facial performance enhancement using dynamic shape space analysis.
ACM TOG 33, 2, 13:1–13:12.

GARRIDO, P., VALGAERT, L., WU, C., AND THEOBALT, C. 2013. Recon-
structing detailed dynamic face geometry from monocular video. ACM
TOG 32, 6, 158:1–158:10.

SHI, F., WU, H.-T., TONG, X., AND CHAI, J. 2014. Automatic acquisi-
tion of high-fidelity facial performances using monocular videos. ACM
TOG 33, 6, 222:1–222:13.

VALGAERTS, L., WU, C., BRUHN, A., SEIDEL, H.-P., AND THEOBALT,
C. 2012. Lightweight binocular facial performance capture under uncon-
trolled lighting. ACM TOG 31, 6, 187:1–187:11.

APPENDIX

A. LIST OF MATHEMATICAL SYMBOLS

Symbol Description

F = {ft}Tt=1 input video with T frames ft
M triangle mesh
N,J # of model vertices, triangle faces

V,N,C vertex, normal, reflectance set
G mesh topology

vn,nn, cn vertex position, normal, albedo
Ps,Pr,Pe,Pc shape, refl., expr., corr. model

α,β, δ, τ shape, refl., expr., corr. coeffs.
Es,Er,Ee linear shape, refl., expr. basis

as,ar shape, refl. average
Σs,Σr,Σe matrix of standard deviations
σαk

, σβk ,στk
shape, refl., corr. std. dev.

X = (R, t,α,β,γ, δ, τ ) set of all model parameters
Ks,Kr,Ke,Kc # of shape, refl., expr., corr. coeffs.

Ec manifold harmonics basis
Π perspective camera projection
B # of spherical harmonics bands
Yk k-th SH basis function

γ = (γ>1 , · · · ,γ>B2)
> spherical harmonics coeffs.

γb = (γrb , γ
g
b , γ

b
b)
> b-th coeff. vector

B illumination model
Cp personalized texture
R, t camera orientation, position
C mapping world-to-camera

{Aj}Jj=1 per-face deformation gradients
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Symbol Description

Q polar decomposition (rotation)
S polar decomposition (shear)
φ(x) box-constraint on x
Etotal complete energy

wx, x ∈ {s, r, · · · } weights in the energy function
W blendshape weight matrix
X affine regressor
H target attributes
λ ridge parameter
I identity matrix

p = (p>1 , · · · ,p>J)> deformation feature vectors
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