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Real-time, high-quality, 3D scanning of large-scale scenes is key to mixed
reality and robotic applications. However, scalability brings challenges of
drift in pose estimation, introducing significant errors in the accumulated
model. Approaches often require hours of offline processing to globally
correct model errors. Recent online methods demonstrate compelling re-
sults but suffer from (1) needing minutes to perform online correction, pre-
venting true real-time use; (2) brittle frame-to-frame (or frame-to-model)
pose estimation, resulting in many tracking failures; or (3) supporting only
unstructured point-based representations, which limit scan quality and ap-
plicability. We systematically address these issues with a novel, real-time,
end-to-end reconstruction framework. At its core is a robust pose estimation
strategy, optimizing per frame for a global set of camera poses by consid-
ering the complete history of RGB-D input with an efficient hierarchical
approach. We remove the heavy reliance on temporal tracking and con-
tinually localize to the globally optimized frames instead. We contribute
a parallelizable optimization framework, which employs correspondences
based on sparse features and dense geometric and photometric matching.
Our approach estimates globally optimized (i.e., bundle adjusted) poses in
real time, supports robust tracking with recovery from gross tracking failures
(i.e., relocalization), and re-estimates the 3D model in real time to ensure
global consistency, all within a single framework. Our approach outperforms
state-of-the-art online systems with quality on par to offline methods, but
with unprecedented speed and scan completeness. Our framework leads to
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a comprehensive online scanning solution for large indoor environments,
enabling ease of use and high-quality results.1
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1. INTRODUCTION

We are seeing a renaissance in 3D scanning, fueled both by applica-
tions such as fabrication, augmented and virtual reality, gaming, and
robotics and by the ubiquity of RGB-D cameras, now even available
in consumer-grade mobile devices. This has opened up the need for
real-time scanning at scale. Here, the user or robot must scan an
entire room (or several spaces) in real time, with instantaneous and
continual integration of the accumulated 3D model into the desired
application, whether that is robot navigation, mapping the physical
world into the virtual, or providing immediate user feedback during
scanning.

However, despite the plethora of reconstruction systems, we have
yet to see a single holistic solution for the problem of real-time 3D
reconstruction at scale that makes scanning easily accessible to
untrained users. This is due to the many requirements that such a
solution needs to fulfill:

High-quality surface modeling. We need a single textured and
noise-free 3D model of the scene, consumable by standard graphics
applications. This requires a high-quality representation that can
model continuous surfaces rather than discrete points.

Scalability. For mixed reality and robot navigation scenarios,
we need to acquire models of entire rooms or several large spaces.
Our underlying representation therefore must handle both small-
and large-scale scanning while both preserving global structure and
maintaining high local accuracy.

1Our source code and all reconstruction results are publicly available:
http://graphics.stanford.edu/projects/bundlefusion/.
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Fig. 1. Our novel real-time 3D reconstruction approach solves for global pose alignment and obtains dense volumetric reconstructions at a level of quality
and completeness that was previously only attainable with offline approaches.

Global model consistency. With scale comes the need to correct
pose drift and estimation errors, and the subsequent distortions in
the acquired 3D model. This correction is particularly challenging at
real-time rates but is key for allowing online revisiting of previously
scanned areas or loop closure during actual use.

Robust camera tracking. Apart from incremental errors, camera
tracking can also fail in featureless regions. In order to recover, we
require the ability to relocalize. Many existing approaches rely heav-
ily on proximity to the previous frame, limiting fast camera motion
and recovery from tracking failure. Instead, we need to (re)localize
in a robust manner without relying on temporal coherence.

On-the-fly model updates. In addition to robust tracking, input
data needs to be integrated to a 3D representation and interactively
visualized. The challenge is to update the model after data has been
integrated, in accordance with the newest pose estimates.

Real-time rates. The ability to react to instantaneous feedback
is crucial to 3D scanning and key to obtaining high-quality results.
The real-time capability of a 3D scanning method is fundamental
to AR/VR and robotics applications.

Researchers have studied specific parts of this problem, but to
date there is no single approach to tackle all of these requirements
in real time. This is the very aim of this article, to systematically
address all these requirements in a single, end-to-end real-time re-
construction framework. At the core of our method is a robust pose
estimation strategy, which globally optimizes for the camera trajec-
tory per frame, considering the complete history of RGB-D input
in an efficient local-to-global hierarchical optimization framework.
Since we globally correlate each RGB-D frame, loop closure is
handled implicitly and continuously, removing the need for any
explicit loop closure detection. This enables our method to be ex-
tremely robust to tracking failures, with tracking far less brittle than
existing frame-to-frame or frame-to-model RGB-D approaches. If
tracking failures occur, our framework instantaneously relocalizes
in a globally consistent manner, even when scanning is interrupted
and restarted from a completely different viewpoint. Areas can also
be revisited multiple times without problem, and reconstruction
quality continuously improves. This allows for a robust scanning
experience, where even novice users can perform large-scale scans
without failure.

Key to our work is a new fully parallelizable sparse-then-dense
global pose optimization framework: sparse RGB features are used
for coarse global pose estimation, ensuring proposals fall within
the basin of convergence of the following dense step, which con-
siders both photometric and geometric consistency for fine-scale
alignment. Thus, we maintain global structure with implicit loop

closures while achieving high local reconstruction accuracy. To
achieve the corresponding model correction, we extend a scalable
variant of real-time volumetric fusion [Nießner et al. 2013], but
importantly support model updates based on refined poses from our
global optimization. Thus, we can correct errors in the 3D model in
real time and revisit existing scanned areas. We demonstrate how
our approach outperforms current state-of-the-art online systems at
unprecedented speed and scan completeness, and even surpasses
the accuracy and robustness of offline methods in many scenarios.
This leads to a comprehensive real-time scanning solution for large
indoor environments that requires little expertise to operate, making
3D scanning easily accessible to the masses.

In summary, the main contributions of our work are as follows:

(1) A novel, real-time global pose alignment framework that con-
siders the complete history of input frames, removing the brit-
tle and imprecise nature of temporal tracking approaches while
achieving scalability by a rapid hierarchical decomposition of
the problem by using a local-to-global optimization strategy

(2) A sparse-to-dense alignment strategy enabling both consistent
global structure with implicit loop closures and highly accurate
fine-scale pose alignment to facilitate local surface detail

(3) A new RGB-D reintegration strategy to enable on-the-fly and
continuous 3D model updates when refined global pose esti-
mates are available

(4) Large-scale reconstruction of geometry and texture, demon-
strating model refinement in revisited areas, recovery from
tracking failures, and robustness to drift and continuous loop
closures.

2. RELATED WORK

There has been extensive work on 3D reconstruction over the past
decades. Key to high-quality 3D reconstruction is the choice of un-
derlying representation for fusing multiple sensor measurements.
Approaches range from unstructured point-based representations
[Rusinkiewicz et al. 2002; Weise et al. 2009; Henry et al. 2010;
Keller et al. 2013; Whelan et al. 2015], 2.5D depth map [Merrell
et al. 2007; Meilland and Comport 2013] or height-field [Gallup
et al. 2010] methods to volumetric approaches based on occupancy
grids [Elfes and Matthies 1987; Wurm et al. 2010] or implicit sur-
faces [Hilton et al. 1996; Curless and Levoy 1996]. While each has
tradeoffs, volumetric methods based on implicit truncated signed
distance fields (TSDFs) have become the de facto method for the
highest-quality reconstructions (e.g., Levoy et al. [2000], Fuhrmann
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Fig. 2. Our global pose optimization takes as input the RGB-D stream of a commodity sensor, detects pairwise correspondences between the input frames,
and performs a combination of local and global alignment steps using sparse and dense correspondences to compute per-frame pose estimates.

and Goesele [2014], and Fioraio et al. [2015]). They model contin-
uous surfaces, systematically regularize noise, remove the need for
explicit topology bookkeeping, and efficiently perform incremental
updates. The most prominent recent example is KinectFusion [New-
combe et al. 2011a; Izadi et al. 2011], where real-time volumetric
fusion of smaller scenes was demonstrated.

One inherent issue with these implicit volumetric methods is their
lack of scalability due to reliance on a uniform grid. This has become
a focus of much recent research [Roth and Vona 2012; Whelan
et al. 2012; Zeng et al. 2012; Chen et al. 2013; Keller et al. 2013;
Nießner et al. 2013; Steinbruecker et al. 2014; Zhang et al. 2015;
Reichl et al. 2015], where real-time efficient data structures for
volumetric fusion have been proposed. These exploit the sparsity in
the TSDF representation to create more efficient spatial subdivision
strategies. While this allows for volumetric fusion at scale, pose
estimates suffer from drift, causing distortions in the 3D model.
Even small pose errors, seemingly negligible on a small local scale,
can accumulate to dramatic error in the final 3D model [Nießner
et al. 2013]. Zhang et al. [2015] use planar structural priors and
repeated object detection to reduce the effect of drift; however, they
do not detect loop closures or use color data, which makes tracking
difficult in open or planar areas or very cluttered scenes.

Most of the research on achieving globally consistent 3D models
at scale from RGB-D input requires offline processing and access
to all input frames. Li et al. [2013], Zhou and Koltun [2013], Zhou
et al. [2013], Zhou and Koltun [2014], and Choi et al. [2015] provide
for globally consistent models by optimizing across the entire pose
trajectory but require minutes or even hours of processing time,
meaning real-time revisiting or refinement of reconstructed areas is
infeasible.

Real-time, drift-free pose estimation is a key focus in the simulta-
neous localization and mapping (SLAM) literature. Many real-time
monocular RGB methods have been proposed, including sparse
[Klein and Murray 2007], semidense [Engel et al. 2013; Forster
et al. 2014], or direct methods [Meilland et al. 2011; Engel et al.
2014]. Typically these approaches rely on either pose-graph op-
timization [Kümmerle et al. 2011] or bundle adjustment [Triggs
et al. 2000], minimizing reprojection error across frames and/or
distributing the error across the graph. While impressive tracking
results have been shown using only monocular RGB sensors, these
approaches do not generate detailed dense 3D models, which is the
aim of our work.

MonoFusion [Pradeep et al. 2013] augments sparse SLAM bun-
dle adjustment with dense volumetric fusion, showing compelling
monocular results but on small-scale scenes. Real-time SLAM

approaches typically first estimate poses frame to frame and perform
correction in a background thread (running slower than real-time
rates; e.g., 1Hz). In contrast, DTAM [Newcombe et al. 2011b]
uses the concept of frame-to-model tracking (from KinectFusion
[Newcombe et al. 2011a; Izadi et al. 2011]) to estimate the pose
directly from the reconstructed dense 3D model. This omits the
need for a correction step but clearly does not scale to larger scenes.

Pose estimation from range data typically is based on variants of
the iterative closest point (ICP) algorithm [Besl and McKay 1992;
Rusinkiewicz and Levoy 2001]. In practice, this makes tracking
extremely brittle and has led researchers to explore either the use
of RGB data to improve frame-to-frame tracking [Whelan et al.
2013a] or the use of global pose estimation correction, including
pose graph optimization [Steinbruecker et al. 2013], loop closure
detection [Whelan et al. 2013b], incremental bundle adjustment
[Whelan et al. 2015; Fioraio et al. 2015], or recovery from tracking
failures by image or keypoint-based relocalization [Glocker et al.
2015; Valentin et al. 2015].

These systems are state of the art in terms of online correction of
both pose and underlying 3D model. However, they require many
seconds or even minutes to perform online optimization [Whelan
et al. 2013b; Fioraio et al. 2015]; assume very specific camera tra-
jectories to detect explicit loop closures, limiting free-form camera
motions and scanning [Whelan et al. 2013b]; rely on computing op-
timized camera poses prior to fusion, limiting the ability to refine the
model afterward [Steinbruecker et al. 2013]; or use point-based rep-
resentations that limit quality and lack general applicability where
continuous surfaces are needed [Whelan et al. 2015].

3. METHOD OVERVIEW

The core of our approach is an efficient global pose optimization
algorithm that operates in unison with a large-scale, real-time 3D
reconstruction framework; see Figure 2. At every frame, we contin-
uously run pose optimization and update the reconstruction accord-
ing to the newly computed pose estimates. We do not strictly rely on
temporal coherence, allowing for free-form camera paths, instan-
taneous relocalization, and frequent revisiting of the same scene
region. This makes our approach robust toward sensor occlusion,
fast frame-to-frame motions, and featureless regions.

We take as input the RGB-D stream captured by a commodity
depth sensor. To obtain global alignment, we perform a sparse-then-
dense global pose optimization: we use a set of sparse feature corre-
spondences to obtain a coarse global alignment, as sparse features
inherently provide for loop closure detection and relocalization.
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This alignment is then refined by optimizing for dense photometric
and geometric consistency. Sparse correspondences are established
through pairwise Scale-Invariant Feature Transform (SIFT) [Lowe
2004] feature correspondences between all input frames (see Sec-
tion 4.1). That is, detected SIFT keypoints are matched against all
previous frames and carefully filtered to remove mismatches, thus
avoiding false loop closures (see Section 4.1.1).

To make real-time global pose alignment tractable, we perform
a hierarchical local-to-global pose optimization (see Section 4.2)
using the filtered frame correspondences. On the first hierarchy
level, every consecutive n frames compose a chunk, which is locally
pose optimized under the consideration of its contained frames. On
the second hierarchy level, all chunks are correlated with respect
to each other and globally optimized. This is akin to hierarchi-
cal submapping [Maier et al. 2014]; however, instead of analyzing
global connectivity once all frames are available, our new method
forms chunks based on the current temporal window. Note that
this is our only temporal assumption; between chunks there is no
temporal reliance.

This hierarchical two-stage optimization strategy reduces the
number of unknowns per optimization step and ensures our method
scales to large scenes. Pose alignment on both levels is formu-
lated as an energy minimization problem in which both the filtered
sparse correspondences and the dense photometric and geometric
constraints are considered (see Section 4.3). To solve this highly
nonlinear optimization problem on both hierarchy levels, we em-
ploy a fast data-parallel GPU-solver tailored to the problem (see
Section 4.4).

A dense scene reconstruction is obtained using a sparse volumet-
ric representation and fusion [Nießner et al. 2013], which scales to
large scenes in real-time. The continuous change in the optimized
global poses necessitates continuous updates to the global 3D scene
representation (see Section 5). A key novelty is to allow for symmet-
ric on-the-fly reintegration of RGB-D frames. In order to update the
pose of a frame with an improved estimate, we remove the RGB-D
image at the old pose with a new real-time de-integration step and
reintegrate it at the new pose. Thus, the volumetric model continu-
ously improves as more RGB-D frames and refined pose estimates
become available; for example, if a loop is closed (cf. Figure 13).

4. GLOBAL POSE ALIGNMENT

We first describe the details of our real-time global pose optimiza-
tion strategy, which is the foundation for online, globally consistent
3D reconstruction. Input to our approach is the live RGB-D stream
S = {fi = (Ci ,Di)}i captured by a commodity sensor. We assume
spatially and temporally aligned color Ci and depth data Di at each
frame, captured at 30Hz and 640×480 pixel resolution. The goal is
to find a set of 3D correspondences between the frames in the input
sequence, and then find an optimal set of rigid camera transforms
{Ti} such that all frames align as best as possible. The transforma-
tion Ti(p) = Rip + ti (rotation Ri , translation ti) maps from the
local camera coordinates of the ith frame to the world space coordi-
nate system; we assume the first frame defines the world coordinate
system.

4.1 Feature Correspondence Search

In our framework, we first search for sparse correspondences be-
tween frames using efficient feature detection, feature matching,
and correspondence filtering steps. These sparse correspondences
are later used in tandem with dense photometric correspondences,
but since accurate sparse correspondences are crucial to attaining

the basin of convergence of the dense optimization, we elaborate
on their search and filtering later. For each new frame, SIFT fea-
tures are detected and matched to the features of all previously seen
frames. We use SIFT as it accounts for the major variation encoun-
tered during hand-held RGB-D scanning, namely, image translation,
scaling, and rotation. Potential matches between each pair of frames
are then filtered to remove false positives and produce a list of valid
pairwise correspondences as input to global pose optimization. Our
correspondence search is performed entirely on the GPU, avoiding
the overhead of copying data (e.g., feature locations, descriptors,
matches) to the host. We compute SIFT keypoints and descriptors
at 4−5 ms per frame and match a pair of frames in ≈0.05ms (in
parallel). We can thus find full correspondences in real time against
up to over 20K frames, matched in a hierarchical fashion, for every
new input RGB-D image.

4.1.1 Correspondence Filtering. To minimize outliers, we fil-
ter the sets of detected pairwise correspondences based on geo-
metric and photometric consistency. Note that further robustness
checks are built into the optimization (not described in this section;
see Section 4.4.1 for details).

Key Point Correspondence Filter. For a pair of frames fi and fj

with detected corresponding 3D points P from fi , and Q from fj ,
the key point correspondence filter finds a set of correspondences
that exhibit a stable distribution and a consistent rigid transform.
Correspondences are greedily aggregated (in order of match dis-
tance); for each newly added correspondence, we compute the rigid
transform Tij (p) = (T −1

j ◦ Ti)(p), which minimizes the RMSD be-
tween the current set of correspondences Pcur and Qcur , using the
Kabsch algorithm [Kabsch 1976; Gower 1975]. We further check
whether this is an ambiguously determined transform (e.g., the
correspondences lie on a line or exhibit rotational symmetry) by
performing a condition analysis of the covariance of points of Pcur

and Qcur as well as the cross-covariance between Pcur and Qcur ; if
any of these condition numbers are high (>100), then the system
is considered unstable. Thus, if the reprojection error under Tij is
high (max residual > 0.02m) or the condition analysis determines
instability, then correspondences are removed (in order of reprojec-
tion error) until this is not the case anymore or there are too few
correspondences to determine a rigid transform. If the resulting set
of correspondences for fi and fj do not produce a valid transform,
all correspondences between fi and fj are discarded.

Surface Area Filter. In addition, we check that the surface
spanned by the features is large enough, as correspondences span-
ning a small physical size are prone to ambiguity. For frames fi and
fj , we estimate the surface areas spanned by the 3D keypoints P
of fi and by the 3D keypoints Q of fj . For each set of 3D points,
we project them into the plane given by their two principal axes,
with surface area given by the 2D oriented bounding box of the
resulting projected points. If the areas spanned by P and Q are
insufficient (<0.032m2), the set of matches is deemed ambiguous
and discarded.

Dense Verification. Finally, we perform a dense two-sided ge-
ometric and photometric verification step. For frames fi and fj ,
we use the computed relative transform Tij from the key point cor-
respondence filter to align the coordinate systems of fi and fj .
We measure the average depth discrepancy, normal deviation, and
photoconsistency of the reprojection in both directions in order
to find valid pixel correspondences and compute the reprojection
error of these correspondences. For efficiency reasons, this step
is performed on filtered and downsampled input frames of size
w′ × h′ = 80 × 60. Note that when a new RGB-D image fi arrives,
its filtered and downsampled color intensity C low

i and depth Dlow
i are
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cached for efficiency. The camera space positions P low
i and normals

Nlow
i of each Dlow

i are also computed and cached per frame. With
π denoting the camera intrinsics for the downsampled images, the
total reprojection error from fi to fj is

Er (fi, fj ) =
∑
x,y

∥∥Tij (pi,x,y) − qj,x,y

∥∥
2
.

Here, pi,x,y = P low
i (x, y) and qj,x,y = P low

j (π−1(Tij pi,x,y)). How-
ever, this is sensitive to occlusion error, so we discard correspon-
dences with high depth discrepancy, normal deviation, or lack of
photoconsistency. That is, the potential correspondence at pixel lo-
cation (x, y) is considered valid if the following conditions hold:

∥∥Tij (pi,x,y) − qj,x,y

∥∥
2

< τd

(Tij (ni,x,y)) · nj,x,y > τn∥∥C low
i (x, y) − C low

j (x, y)
∥∥

1
< τc.

Matches between fi and fj are invalidated in the case of excessive
reprojection error (>0.075m) or insufficient valid correspondences
(<0.02w′h′), and we use τd = 0.15m, τn = 0.9, τc = 0.1. This
check is efficiently implemented with a single kernel call, such that
each thread block handles one pair of images, with reprojection
computed through local reductions.

If all checks are passed, the correspondences are added to the
valid set, which is used later on for pose optimization. We only
consider a frame-to-frame match if the valid set comprises at least
Nmin correspondences. Note that Nmin = 3 is sufficient to define a
valid frame-to-frame transform; however, we found Nmin = 5 to be
a good compromise between precision and recall.

4.2 Hierarchical Optimization

In order to run at real-time rates on up to tens of thousands of RGB-
D input frames, we apply a hierarchical optimization strategy. The
input sequence is split into short chunks of consecutive frames. On
the lowest hierarchy level, we optimize for local alignments within
a chunk. On the second hierarchy level, chunks are globally aligned
against each other, using representative keyframes with associated
features per chunk.

Local Intrachunk Pose Optimization. Intrachunk alignment is
based on chunks of Nchunk = 11 consecutive frames in the input
RGB-D stream; adjacent chunks overlap by one frame. The goal
of local pose optimization is to compute the best intrachunk align-
ments {Ti}, relative to the first frame of the chunk, which locally
defines the reference frame. To this end, valid feature correspon-
dences are searched between all pairs of frames of the chunk, and
then the energy minimization approach described in Section 4.3 is
applied, jointly considering both these feature correspondences and
dense photometric and geometric matching. Since each chunk only
contains a small number of consecutive frames, the pose variation
within the chunk is small, and we can initialize each of the Ti to
the identity matrix. To ensure that the local pose optimization result
after convergence is sufficiently accurate, we apply the Dense Ver-
ification test (see Section 4.1.1) to each pair of images within the
chunk using the optimized local trajectory. If the reprojection error
is too large for any pair of images (>0.05m), the chunk is discarded
and not used in the global optimization.

Per-Chunk Keyframes. Once a chunk has been completely
processed, we define the RGB-D data from the first frame in the
chunk to be the chunk’s keyframe. We also compute a representa-
tive aggregate keyframe feature set. Based on the optimized pose
trajectory of the chunk, we compute a coherent set of 3D positions
of the intrachunk feature points in world space. These 3D positions

may contain multiple instances of the same real-world point, found
in separate pairwise frame matches. Thus, to obtain the keyframe
feature set, we aggregate the feature point instances that have previ-
ously found (intrachunk) matches. Those that coincide in 3D world
space (<0.03m) are merged to one best 3D representative in the
least squares sense. This keyframe feature set is projected into the
space of the keyframe using the transformations from the frames of
origin, resulting in a consistent set of feature locations and depths.
Note that once this global keyframe and keyframe feature set is
created, the chunk data (i.e., intrachunk features, descriptors, corre-
spondences) can be discarded as it is not needed in the second layer
pose alignment.

Global Interchunk Pose Optimization. Sparse correspondence
search and filtering between global keyframes is analogous to that
within a chunk, but on the level of all keyframes and their feature
sets. If a global keyframe does not find any matches to previously
seen keyframes, it is marked as invalid but kept as a candidate, al-
lowing for revalidation when it finds a match to a keyframe observed
in the future. The global pose optimization computes the best global
alignments {Ti} for the set of all global keyframes, thus aligning all
chunks globally. Again, the same energy minimization approach
from Section 4.3 is applied using both sparse and dense constraints.
Intrachunk alignment runs after each new global keyframe has found
correspondences. The pose for a global keyframe is initialized with
the delta transform computed by the corresponding intrachunk opti-
mization, composed with the previous global keyframe pose. After
the intrachunk transforms have been computed, we obtain globally
consistent transforms among all input frames by applying the cor-
responding delta transformations (from the local optimization) to
all frames in a chunk.

4.3 Pose Alignment as Energy Optimization

Given a set of 3D correspondences between a set of frames S (frames
in a chunk or keyframes, depending on hierarchy level), the goal of
pose alignment is to find an optimal set of rigid camera transforms
{Ti} per frame i (for simpler notation, we henceforth write i for fi)
such that all frames align as best as possible. We parameterize the
4 × 4 rigid transform Ti using matrix exponentials based on skew-
symmetric matrix generators [Murray et al. 1994], which yields fast
convergence. This leaves three unknown parameters for rotation and
three for translation. For ease of notation, we stack the degrees of
freedom for all |S| frames in a parameter vector:

X = (R0, t0, . . . , R|S|, t|S|)T = (x0, . . . , xN )T .

Here, N is the total number of variables xi . Given this notation, we
phrase the alignment problem as a variational nonlinear least squares
minimization problem in the unknown parameters X . To this end,
we define the following alignment objective, which is based on
sparse features and dense photometric and geometric constraints:

Ealign(X ) = wsparseEsparse(X ) + wdenseEdense(X ).

Here, wsparse and wdense are weights for the sparse and dense match-
ing terms, respectively. wdense is linearly increased; this allows the
sparse term to first find a good global structure, which is then refined
with the dense term (as the poses fall into the basin of convergence of
the dense term, it becomes more reliable), thus achieving coarse-to-
fine alignment. Note that depending on the optimization hierarchy
level, the reference frame is the first frame in the chunk (for intra-
chunk alignment) or the first frame in the entire input sequence (for
global interchunk alignment). Hence, the reference transform T0 is
not a free variable and is left out from the optimization.
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Sparse Matching. In the sparse matching term, we minimize
the sum of distances between the world space positions over all
feature correspondences between all pairs of frames in S:

Esparse(X ) =
|S|∑

i=1

|S|∑

j=1

∑

(k,l)∈C(i,j )

‖Tipi,k − Tj pj,l‖2
2.

Here, pi,k is the kth detected feature point in the ith frame. Ci,j

is the set of all pairwise correspondences between the ith and the
j th frame. Geometrically speaking, we seek the best rigid transfor-
mations Ti such that the Euclidean distance over all the detected
feature matches is minimized.

Dense Matching. We additionally use dense photometric and
geometric constraints for fine-scale alignment. To this end, we ex-
ploit the dense pixel information of each input frame’s color Ci and
depth Di . Evaluating the dense alignment is computationally more
expensive than the previous sparse term. We therefore evaluate it
on a restricted set E of frame pairs; E contains a frame pair (i, j )
if their camera angles are similar (within 60◦, to avoid glancing
angles of the same view) and they have nonzero overlap with each
other; this can be thought of as encoding the edges (i, j ) of a sparse
matching graph. The optimization for both dense photometric and
geometric alignment is based on the following energy:

Edense(T ) = wphotoEphoto(T ) + wgeoEgeo(T ).

Here, wphoto is the weight of the photometric term and wgeo the
weight of the geometric term, respectively. For the dense photo-
consistency term, we evaluate the error on the gradient Ii of the
luminance of Ci to gain robustness against lighting changes:

Ephoto(X ) =
∑

(i,j )∈E

|Ii |∑

k=0

∥∥Ii(π (di,k)) − Ij (π (T −1
j Tidi,k))

∥∥2

2
.

Here, π denotes the perspective projection, and di,k is the 3D po-
sition associated with the kth pixel of the ith depth frame. Our
geometric alignment term evaluates a point-to-plane metric to al-
low for fine-scale alignment in the tangent plane of the captured
geometry:

Egeo(X ) =
∑

(i,j )∈E

|Di |∑

k=0

[
nT

i,k

(
di,k −T −1

i Tjπ
−1

(
Dj

(
π

(
T −1

j Tidi,k

))))]2
.

Here, ni,k is the normal of the kth pixel in the ith input frame. Corre-
spondences that project outside of the input frame are ignored, and
we apply ICP-like pruning based on distance and normal constraints
after each optimization step. For the dense photometric and geomet-
ric constraints, we downsample Ii and Di , to 80 × 60 pixels (using
the same cached frames as for the dense verification filter). Note that
for the global pose optimization, the result of optimizing densely at
every keyframe is effectively reset by the sparse correspondence op-
timization, since the 3D positions of the correspondences are fixed.
Thus, we only perform the dense global keyframe optimization after
the user has indicated the end of scanning.

4.4 Fast and Robust Optimization Strategy

The described global pose alignment objective is a nonlinear least
squares problem in the unknown extrinsic camera parameters. Since
our goal is online and global camera pose optimization for long
scanning sequences with over 20,000 frames, an efficient, yet ef-
fective, optimization strategy is required. To face this challenge,
we implement a data-parallel GPU-based nonlinear iterative solver
similar to the work of Zollhöfer et al. [2014]. However, the unique

sparsity pattern associated with the global alignment objective re-
quires a different parallelization strategy and prohibits the use of
previous GPU-based solvers [Zollhöfer et al. 2014; Wu et al. 2014;
Zollhöfer et al. 2015]. Our approach is based on the Gauss-Newton
method, which only requires first-order derivatives and exhibits
quadratic convergence close to the optimum, which is beneficial
due to our incremental optimization scheme. We find the best pose
parameters X ∗ by minimizing the proposed highly nonlinear least
squares objective using this method:

X ∗ = argmin
X

Ealign(X ).

For ease of notation, we reformulate the objective in the following
canonical least squares form:

Ealign(X ) =
R∑

i=1

ri(X )2.

This is done by renaming the R = 3Ncorr + |E| · (|Ii | + |Di |)
terms of the energy appropriately. Here, Ncorr is the total number of
either interchunk sparse correspondences for interchunk alignment
or per-chunk sparse correspondences for intrachunk alignment. The
notation can be further simplified by defining a vector field F :
R

N → R
R that stacks all scalar residuals:

F(X ) = [. . . , ri(X ), . . .]T .

With this notation, Erefine can be expressed in terms of the squared
Euclidean length of F(X ):

Erefine(X ) = ||F(X )||22.
Gauss-Newton is applied via a local linear approximation of F at
the last solution X k−1 using first-order Taylor expansion:

F(X k) = F(X k−1) + JF(X k−1) · �X , �X = X k − X k−1.

Here, JF denotes the Jacobian of F. By substituting F with this
local approximation, the optimal parameter update �X ∗ is found
by solving a linear least squares problem:

�X ∗ = argmin
�X

||F(X k−1) + JF(X k−1) · �X ||22︸ ︷︷ ︸
Elin(�X )

.

To obtain the minimizer �X ∗, we set the corresponding partial
derivatives dElin

d�Xi
(�X ∗

i ) = 0, ∀i to zero, which yields the following
system of linear equations:

JF(X k−1)T JF(X k−1) · �X ∗ = −JF(X k−1)T F(X k−1).

To solve the system, we use a GPU-based data-parallel Precondi-
tioned Conjugate Gradient (PCG) solver with Jacobi preconditioner.
Based on the iterative solution strategy, the sparsity of the system
matrix JF(X k−1)T JF(X k−1) can be exploited. For the sparse term,
we never explicitly compute this matrix but compute the nonzero
entries, if required, on the fly during the PCG iterations.

Gauss-Newton iterates this process of locally linearizing the en-
ergy and solving the associated linear least squares problem starting
from an initial estimate X0 until convergence. We warm-start the
optimization based on the result obtained in the last frame.

In contrast to Zollhöfer [2014], instead of using a reduction based
on two kernels to compute the optimal step size and update for the
descent direction, we use a single kernel running a combination of
warp scans based on the shuffle intrinsic and global memory atomics
to accumulate the final result. This turned out to be much faster for
our problem size.
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Fig. 3. Large-scale reconstruction results: our proposed real-time global pose optimization outperforms current state-of-the-art online reconstruction systems.
The globally aligned 3D reconstructions are at a quality that was previously only attainable offline. Note the completeness of the scans, the global alignment
without noticeable camera drift, and the high local quality of the reconstructions in both geometry and texture. Scans comprise thousands of input frames and
include revisiting and many loop closures.

The central operation of the PCG algorithm is the multiplication
of the system matrix with the current descent direction.

Let us first consider the sparse feature term. To avoid fill-in, we
multiply the system matrix incrementally based on two separate
kernel calls: the first kernel multiplies JF and the computed inter-
mediate result is then multiplied by JT

F in the second kernel call. For
example, at the end of the apt0 sequence (see Figure 3, bottom),
JF has about 105K rows (residuals) and 5K columns (unknowns).
In all operations, we exploit the sparse structure of the matrix, only
performing operations that will lead to a nonzero result. Since JF

and JT
F have very different row-wise sparsity patterns, using two

different kernel calls helps to fine-tune the parallelization approach
to the specific requirements.

More specifically, for the sparse term, each row of JF encodes
exactly one pairwise correspondence, depending on at most two
extrinsic camera poses or 2 × 6 = 12 nonzero matrix entries. Due
to the low number of required operations, the matrix-vector product
can be readily computed by assigning one dedicated thread to each
3D block row, that is, handling the x-, y-, and z-residuals of one
correspondence. This is beneficial, since the different dimensions
share common operations in the evaluation of F and JF. In contrast,
JT has exactly one row per unknown. The number of nonzero en-
tries in each row is equivalent to the number of correspondences
involving the frame associated with the unknown. For longer scan-
ning sequences, this can easily lead to several thousand entries per
row. To reduce the amount of memory reads and computes of each
thread, we opted for a reduction-based approach to compute the
matrix-vector products. We use one block of size Nblock = 256
to compute each row-wise dot product. Each warp of a block per-
forms a warp reduction based on the shuffle intrinsic and the final

per-warp results are combined based on shared memory atomics.
For computing the multiplication with JT

F , we precompute auxil-
iary lists that allow lookup to all correspondences that influence
a certain variable. This table is filled based on a kernel that has
one thread per correspondence and adds entries to the lists corre-
sponding to the involved variables. The per-list memory is managed
using atomic counters. We recompute this table if the set of active
correspondences changes.

For the dense photometric and geometric alignment terms, the
number of associated residuals is considerably higher. Since the
system matrix is fixed during the PCG steps, we precompute it at
the beginning of each nonlinear iteration. The required memory is
preallocated and we update only the nonzero entries via scattered
writes. Note that we only require a few writes, since we perform the
local reductions in shared memory.

4.4.1 Correspondence and Frame Filtering. As an additional
safeguard to make the optimization robust against potential corre-
spondence outliers, which were mistakenly considered to be valid,
we perform correspondence and frame filtering after each opti-
mization finishes. That is, we determine the maximum residual
rmax = maxi ri(X ) using a parallel reduction on the GPU, with the
final max computation performed on the CPU. If rmax > 0.05m,
we remove all correspondences between the two frames i and j
associated with the correspondence that induces rmax. Note that all
correspondences between i and j are removed in order to mini-
mize the number of times the optimization has to run in order to
prune all bad correspondences. Additionally, if a frame has no cor-
respondence to any other frame, it is implicitly removed from the
optimization and marked as invalid.
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Note that the vast majority of false loop closures are filtered out
through the verification steps (Section 4.1.1), and the optimization
pruning effectively removes the rest. Table II provides a detailed
overview of the effects of these filtering steps.

5. DYNAMIC 3D RECONSTRUCTION

Key to live, globally consistent reconstruction is updating the 3D
model based on newly optimized camera poses. We thus monitor
the continuous change in the poses of each frame to update the volu-
metric scene representation through integration and de-integration
of frames. Based on this strategy, errors in the volumetric repre-
sentation due to accumulated drift or dead reckoning in featureless
regions can be fixed as soon as better pose estimates are available.

5.1 Scene Representation

Scene geometry is reconstructed by incrementally fusing all input
RGB-D data into an implicit truncated signed distance (TSDF)
representation, following Curless and Levoy [1996]. The TSDF
is defined over a volumetric grid of voxels; to store and process
this data, we employ the state-of-the-art sparse volumetric voxel
hashing approach proposed by Nießner et al. [2013]. This approach
scales well to the scenario of large-scale surface reconstruction,
since empty space needs to be neither represented nor addressed;
the TSDF is stored in a sparse volumetric grid based on spatial
hashing. Following the original approach, we also use voxel blocks
of 8 × 8 × 8 voxels. In contrast to the work of Nießner et al. [2013],
we allow for RGB-D frames to both be integrated into the TSDF
and be de-integrated (i.e., adding and removing frames from the
reconstruction). In order to allow for pose updates, we also ensure
that these two operations are symmetric; that is, one inverts the
other.

5.2 Integration and De-integration

Integration of a depth frame Di occurs as follows. For each voxel,
D(v) denotes the signed distance of the voxel, W(v) the voxel
weight, di(v) the projective distance (along the z axis) between
a voxel and Di , and wi(v) the integration weight for a sample of Di .
For data integration, each voxel is then updated by

D′(v) = D(v)W(v)+wi (v)di (v)
W(v)+wi (v) , W′(v) = W(v) + wi(v).

We can reverse this operation to de-integrate a frame. Each voxel
is then updated by

D′(v) = D(v)W(v)−wi (v)di (v)
W(v)−wi (v) , W′(v) = W(v) − wi(v).

We can thus update a frame in the reconstruction by de-integrating
it from its original pose and integrating it with a new pose. This is
crucial for obtaining high-quality reconstructions in the presence
of loop closures and revisiting, since the already integrated surface
measurements must be adapted to the continuously changing stream
of pose estimates.

5.3 Managing Reconstruction Updates

Each input frame is stored with its associated depth and color data,
along with two poses: its integrated pose and its optimized pose.
The integrated pose is the one used currently in the reconstruction
and is set whenever a frame gets integrated. The optimized pose
stores the (continually changing) result of the pose optimization.

When an input frame arrives, we aim to integrate it into the re-
construction as quickly as possible, to give the user or robot instan-
taneous feedback of the 3D model. Since the global optimization is
not run for each frame but for each chunk, an optimized pose may
not immediately be available and we must obtain an initial transform
by other means. We compute this initial transform by composing
the frame-to-frame transform from the key point correspondence
filter with the newest available optimized transform.

In order to update the reconstruction with the most pertinent
optimization updates, we sort the frames in descending order by
the difference between the integrated transform and the optimized
transform. The integrated transform and optimized transform are
parameterized by six DOFs: α, β, γ (here, we use Euler angles in
radians) describing the rotation, and x, y, z (in meters) describing
the translation. Then the distance between the integrated transform
tint = (αi, βi, γi, xi, yi , zi) and the optimized transform topt =
(αo, βo, γo, xo, yo, zo) is defined to be ‖s ∗ tint − s ∗ topt‖2, where
s = (2, 2, 2, 1, 1, 1) is multiplied element-wise to bring the rotations
and translations closer in scale. For each new input frame, we de-
integrate and integrate the Nfix = 10 frames from the top of the list.
This allows us to dynamically update the reconstruction to produce
a globally consistent 3D reconstruction.

6. RESULTS

For live scanning, we use a Structure Sensor2 mounted to an iPad
Air. The RGB-D stream is captured at 30Hz with a color and depth
resolution of 640×480. Note that we are agnostic to the type of used
depth sensor. We stream the captured RGB-D data via a wireless
network connection to a desktop machine that runs our global pose
optimization and reconstructs a 3D model in real time. Visual feed-
back of the reconstruction is streamed live to the iPad to aid in the
scanning process. To reduce the required bandwidth, we use data
compression based on zlib for depth and jpeg compression for color.
We implemented our global pose alignment framework using the
CUDA 7.0 architecture. Reconstruction results of scenes captured
using our live system are shown in Figures 1 and 3 as well as in the
supplementary video. The completeness of the various large-scale
indoor scenes (four offices, two apartments, one copyroom, with
up to 95m camera trajectories), their alignment without noticeable
camera drift, and the high local quality of geometry and texture are
on par with even offline approaches. This also demonstrates that our
global pose alignment strategy scales well to large spatial extents
and long sequences (over 20,000 frames).

Qualitative Comparison. First, we compare to the online 3D re-
construction approach of Nießner et al. [2013]; see Figure 12. In
contrast to their work, which builds on frame-to-model tracking and
suffers from the accumulation of camera drift, we are able to pro-
duce drift-free reconstructions at high fidelity. Our novel global pose
optimization framework implicitly handles loop closure, recovers
from tracking failures, and reduces geometric drift. Note that most
real-time fusion methods (e.g., Izadi et al. [2011], Newcombe et al.
[2011a], Chen et al. [2013], and Nießner et al. [2013]) share the same
frame-to-model ICP tracking algorithm, and therefore suffer from
notable drift. Figures 7 and 9 show a comparison of our approach
with the online ElasticFusion approach of Whelan et al. [2015],
which captures surfel maps using dense frame-to-model tracking
and explicitly handles loop closures using nonrigid warping. In con-
trast, our dynamic de-integration and integration of frames mitigates

2http://structure.io/.
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Fig. 4. Performance evaluation: our proposed pipeline runs at well beyond
30Hz for all used test sequences. The computations are split up over two
GPUs (left bar Titan X, right bar Titan Black).

Fig. 5. Convergence analysis of the global keyframe optimization (log
scale): peaks correspond to new global keyframes. Only a few iterations are
required for convergence.

issues with warping artifacts in rigid structures, and moreover pro-
duces a high-quality continuous surface. Since our approach does
not rely on explicit loop closure detection, it scales better to scenar-
ios with many loop closures (c.p. Figures 7 and 9). We additionally
compare to the offline Redwood approach [Choi et al. 2015] using
their rigid variant; see Figures 8 and 9. Note, we do not compare to
their newer nonrigid approach, since it fails on most of our dataset
sequences. While their approach takes several hours (2.3 to 13.2
hours for each of our sequences), we achieve comparable quality and
better reconstruction of small-scale detail at real-time rates. Note
that Redwood does not take color information into account, thus
struggling with sequences that contain fewer geometric features.

Performance and Convergence. We measure the performance of
our pipeline on an Intel Core i7 3.4GHz CPU (32GB RAM). For
compute, we use a combination of an NVIDIA GeForce GTX Titan
X and a GTX Titan Black. The Titan X is used for volumetric
reconstruction, and the Titan Black for correspondence search and
global pose optimization. Our pipeline runs with a frame rate well
beyond 30Hz (see Figure 4) for all shown test sequences. Note
that the global dense optimization runs in <500ms at the end of
the sequences. After adding a new global keyframe, our approach
requires only a few iterations to reach convergence. Figure 5 shows
convergence plots for three of the used test sequences (cf. Figure 3);
the behavior generalizes to all other sequences. We achieve this real-
time performance with the combination of our tailored data-parallel
Gauss-Newton solver (efficiently handling millions of residuals and
solving for over a 100,000 unknowns), a sparse-to-dense strategy
enabling convergence in only a few iterations, and a local-to-global
strategy that efficiently decomposes the problem. Note that recent
work provides detailed intuition on why hand-crafted optimizers
outperform existing, general solver libraries [DeVito et al. 2016].

Fig. 6. Recovery from tracking failure: our method is able to detect (gray
overlay) and recover from tracking failure, that is, if the sensor is occluded
or observes a featureless region.

Additionally, we evaluate the performance of our tailored
GPU-based solver against the widely used, CPU-based Ceres
solver [Agarwal et al. 2013]. Figure 11 shows the performance
of both solvers for the sparse energy over 101 keyframes, compris-
ing 600 variables and 16,339 residuals, with poses initialized to the
identity. Note that this behavior is representative of other sparse
energy solves. For Ceres, we use the default Levenberg-Marquardt
with a sparse normal Cholesky linear solver (the fastest of the linear
solver options for this problem). While our solver takes a cou-
ple more iterations to converge without the Levenberg-Marquardt
damping strategy, it still runs ≈20 times faster than Ceres while
converging to the same energy minimum.

Memory Consumption. We evaluate the memory consumption of
our globally consistent reconstruction approach on our eight cap-
tured sequences; see Table I. The most significant required memory
resides in RAM (CPU), that is, 20GB for Apt 0. It stores all RGB-
D frames and depends linearly on the length of the sequence; see
Table V. The required device memory (GPU) is much smaller, for
example, 5.3GB (4mm voxels) and 1.9GB (1cm voxels) for the
same sequence. This is well within the limits of modern graph-
ics cards (12GB for GTX Titan X). We also give the amount of
memory required to store and manage the TSDF (Rec) and to run
the camera pose optimization, both for the sparse term (Opt-s)
and for the dense term (Opt-d). The footprint for storing the SIFT
keypoints and correspondences (included in Opt(s)) is negligibly
small, that is, 31mb for Apt 0. The longest reconstructed sequence
(home_at_scan1_2013_jan_1) is part of the SUN3D dataset [Xiao
et al. 2013], consisting of 14,785 frames (≈8.2-minute scan time
@30Hz). This sequence has a CPU memory footprint of 34.7GB
and requires 7.3GB of GPU memory (4mm voxels) for tracking and
reconstruction.

Recovery from Tracking Failure. If a new keyframe cannot be
aligned successfully, we assume tracking is lost and do not integrate
surface measurements. An example scanning sequence is shown in
Figure 6. To indicate tracking failure, the reconstruction is shown
with a gray overlay. Based on this cue, the user is able to recover the
method by moving back to a previously scanned area. Note that there
is no temporal or spatial coherence required, as our method globally
matches new frames against all existing data. Thus, scanning may
be interrupted and continued at a completely different location.

Loop Closure Detection and Handling. Our global pose opti-
mization approach detects and handles loop closures transparently
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Fig. 7. Our proposed real-time global pose optimization (top) outperforms the method of Whelan et al. [2015] (bottom) in terms of scan completeness and
alignment accuracy. Note, we generate a high-quality surface mesh, while the competing approach only outputs a pointcloud.

Fig. 8. Our proposed real-time global pose optimization (top) delivers a reconstruction quality on par or even better than the offline Redwood [Choi et al.
2015] system (bottom). Note, our reconstructions have more small-scale detail.

Fig. 9. Our proposed real-time global pose optimization (top) delivers a reconstruction quality on par or even better than the offline Redwood [Choi et al.
2015] (middle) and the ElasticFusion [2015] (bottom) system. Note that Redwood does not use color information and was not able to resolve all loop closures
in this challenging scan.

(see Figure 13), since the volumetric scene representation is con-
tinuously updated to match the stream of computed pose estimates.
This allows incrementally fixing loop closures over time by means
of integration and de-integration of surface measurements.

Precision and Recall of Loop Closures. Table II gives the pre-
cision (i.e., the percentage of correct chunk pair correspondence

detections from the set of established correspondences) and recall
(i.e., the percentage of detected chunk pair correspondences from
the set of ground truth correspondences) on the loop closure set of
the augmented ICL-NUIM dataset. A chunk pair correspondence is
determined to be in the ground truth set if their geometry overlaps
by ≥30% according to the ground truth trajectory, and a proposed
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Fig. 10. Comparison of sparse versus dense alignment: the proposed dense
intra- and interchunk alignment (top) leads to higher-quality reconstructions
than only the sparse alignment step (bottom).

Fig. 11. Performance comparison of our tailored GPU-based solver to
Ceres [Agarwal et al. 2013]. Both solvers are evaluated over the sparse
energy term for 101 keyframes, involving 600 variables and 16,339 residuals,
with poses initialized to the identity.

chunk pair correspondence is determined to be correct if it lies in
the ground truth set with reprojection error less than 0.2m, follow-
ing Choi et al. [2015]. We show our registration performance after
running the SIFT matcher (Sift Raw), our correspondence filters
described in Section 4.1.1 (the Key Point Correspondence Filter
(SIFT + KF) and the Surface Area and Dense Verification (SIFT +
Verify)), and the final result after the optimization residual prun-
ing described in Section 4.4.1 (Opt). As can be seen, all steps of
the globally consistent camera tracking increase precision while
maintaining sufficient recall.

Dense Tracking and Voxel Resolution. In Figure 10, we evaluate
the influence of the dense tracking component of our energy func-
tion. While globally drift-free reconstructions can be obtained by
sparse tracking only, the dense alignment term leads to more refined
local results. The impact of voxel resolution on reconstruction qual-
ity is shown in Figure 14. As a default, we use a voxel resolution
of 4mm for all reconstructions. While 1cm voxels reduce memory
consumption, the quality of the reconstruction is slightly impaired.

Quantitative Comparison. We quantitatively evaluate our ap-
proach on independent benchmark data and compare against
state-of-the-art online (DVO-SLAM [Kerl et al. 2013], RGB-D
SLAM [Endres et al. 2012], MRSMap [Stückler and Behnke 2014],
Kintinuous [Whelan et al. 2012], VoxelHashing [Nießner et al.
2013, 2014], ElasticFusion [Whelan et al. 2015]) and offline systems
(Submap Bundle Adjustment [Maier et al. 2014], Redwood [Choi
et al. 2015]). Note that for Redwood, we show results for the rigid
variant, which produced better camera tracking results. We first eval-
uate our approach on the ICL-NUIM dataset of Handa et al. [2014],
which provides ground truth camera poses for several scans of a
synthetic environment. Table III shows our trajectory estimation

Table I. Memory Consumption (GB) for the
Captured Sequences

GPU CPU
1cm 4mm

Opt-d Opt-s Rec
∑

Rec
∑

Apt 0 1.4 0.031 0.5 1.9 3.9 5.3 20.0
Apt 1 1.4 0.031 0.4 1.8 3.2 4.6 20.1
Apt 2 0.6 0.012 0.7 1.4 6.0 6.7 9.3

Copyroom 0.7 0.016 0.3 1.1 1.8 2.6 10.5
Office 0 1.0 0.021 0.4 1.4 2.5 3.5 14.4
Office 1 0.9 0.024 0.4 1.4 2.9 3.9 13.4
Office 2 0.6 0.011 0.4 1.0 3.0 3.6 8.2
Office 3 0.6 0.011 0.4 1.0 2.7 3.3 8.9

Fig. 12. Comparison to the VoxelHashing approach of Nießner
et al. [2013]: in contrast to the frame-to-model tracking of VoxelHashing,
our novel global pose optimization implicitly handles loop closure (top),
robustly detects and recovers from tracking failures (middle), and greatly
reduces local geometric drift (bottom).

performance, measured with absolute trajectory error (ATE), on
the four living room scenes (including synthetic noise), for which
we outperform existing state-of-the-art online and offline systems.
Additionally, in Table IV we evaluate our approach on the RGB-D
benchmark of Sturm et al [2012]. This benchmark provides ground
truth camera pose estimates for hand-held Kinect sequences using a
calibrated motion capture system. For these sequences, which only
cover small scenes and simple camera trajectories, our results are
on par with or better than the existing state of the art. Note that
our own sequences have a larger spatial extent and are much more
challenging, with faster motion and many more loop closures.

For these datasets (Tables III and IV), the Redwood system, which
relies solely on geometric registration, suffers from the relative lack
of varying views in the camera trajectories. In particular, fr3/nst is
a textured wall, which cannot be registered with a geometric-only
method. On both these datasets, we also quantitatively validate the
relevance of our design decisions. While online alignment based
on sparse features only (Ours (s)) achieves reasonable results, us-
ing dense matching only in per-chunk alignment further increases
accuracy (Ours (sd)). Our full sparse and dense matching approach
on both local and global level leads to the highest accuracy.
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Fig. 13. Global pose optimization robustly detects and resolves loop closure. Note, while data is first integrated at slightly wrong locations, the volumetric
representation improves over time as soon as better pose estimates are available.

Table II. Loop Closure Precision and Recall on the Synthetic
Augmented ICL-NUIM Dataset [Choi et al. 2015]

Sift Raw Sift + KF Sift + Verify Opt

Living 1
Precision (%) 27.0 98.0 98.2 100

Recall (%) 47.5 40.3 39.5 39.3

Living 2
Precision (%) 25.3 92.1 92.4 100

Recall (%) 49.3 47.4 45.9 45.7

Office 1
Precision (%) 14.1 97.7 99.6 100

Recall (%) 49.1 48.7 48.0 47.7

Office 2
Precision (%) 10.9 90.2 96.2 100

Recall (%) 46.0 42.4 42.1 42.0

Fig. 14. Comparison of different voxel resolutions: 4mm voxel resolution
(left) leads to higher-fidelity reconstructions than the coarser 1cm resolution
(right). Note the generally sharper texture and the more refined geometry in
case of 4mm voxels.

Table III. ATE RMSE on the Synthetic ICL-NUIM
Dataset by Handa et al. [2014]

kt0 kt1 kt2 kt3
DVO SLAM 10.4cm 2.9cm 19.1cm 15.2cm

RGB-D SLAM 2.6cm 0.8cm 1.8cm 43.3cm
MRSMap 20.4cm 22.8cm 18.9cm 109cm
Kintinuous 7.2cm 0.5cm 1.0cm 35.5cm

VoxelHashing 1.4cm 0.4cm 1.8cm 12.0cm
Elastic Fusion 0.9cm 0.9cm 1.4cm 10.6cm

Redwood (rigid) 25.6cm 3.0cm 3.3cm 6.1cm
Ours (s) 0.9cm 1.2cm 1.3cm 1.3cm
Ours (sd) 0.8cm 0.5cm 1.1cm 1.2cm

Ours 0.6cm 0.4cm 0.6cm 1.1cm
Note that unlike the other methods, Redwood does not use color informa-
tion and runs offline. For our approach, we also provide results for sparse
only (s) as well as sparse and local dense only (sd).

Parameters. While we report default parameters for the Structure
Sensor, other RGB-D sensors maintain different noise character-
istics, and we vary several parameters accordingly. For significant
depth noise, we allow dense verification and residual pruning to be
more lax, so as to not acquire too many false negatives. That is, for
Kinect data, we have a dense reprojection threshold of 0.3m and
prune residuals >0.16m, and for the (noisy) synthetic ICL-NUIM

Table IV. ATE RMSE on the TUM RGB-D Dataset
by Sturm et al. [2012]
fr1/desk fr2/xyz fr3/office fr3/nst

DVO SLAM 2.1cm 1.8cm 3.5cm 1.8cm
RGB-D SLAM 2.3cm 0.8cm 3.2cm 1.7cm

MRSMap 4.3cm 2.0cm 4.2cm 201.8cm
Kintinuous 3.7cm 2.9cm 3.0cm 3.1cm

VoxelHashing 2.3cm 2.2cm 2.3cm 8.7cm
Elastic Fusion 2.0cm 1.1cm 1.7cm 1.6cm
LSD-SLAM - 1.5cm - -
Submap BA 2.2cm - 3.5cm -

Redwood (rigid) 2.7cm 9.1cm 3.0cm 192.9cm
Ours (s) 1.9cm 1.4cm 2.9cm 1.6cm
Ours (sd) 1.7cm 1.4cm 2.8cm 1.4cm

Ours 1.6cm 1.1cm 2.2cm 1.2cm
Note that unlike the other methods listed, Redwood does not use color informa-
tion and runs offline. For our approach, we also provide results for sparse-only
(s) as well as sparse and local dense only (sd).

Table V. Dataset Overview
#Frames Trajectory Length

Apt 0 8560 89.4m
Apt 1 8580 91.8m
Apt 2 3989 87.5m

Copyroom 4480 24.4m
Office 0 6159 52.8m
Office 1 5730 51.7m
Office 2 3500 36.3m
Office 3 3820 66.8m

In order to capture scans at high completeness, the camera is moved in long and
complex trajectories.

data, we have a dense reprojection threshold of 0.1m and prune
residuals >0.08m.

Limitations. As our tracking is based on sparse key point match-
ing, small local misalignments can occur; for example, SIFT
matches can be off by a few pixels and the depth data associ-
ated with a keypoint may be inaccurate due to sensor noise. While
we solve for optimal keypoint positions from the interchunk opti-
mization, small mismatches between global keypoints can still be
propagated within the global optimization, leading to local misalign-
ments. Ideally, we would treat the locations of the global keypoints
as unknowns to optimize for. Unfortunately, this would involve sig-
nificant computational effort, which (currently) seems to exceed
even the computational budget of offline approaches. Another limi-
tation is that we currently run our method on two GPUs. Fortunately,
we can easily stream the data to and from an iPad with live visual
feedback, on both the desktop and mobile device, thus making scan-
ning fun and convenient. With our current hardware configurations,
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Fig. 15. Reconstruction results on scenes from the SUN3D dataset [Xiao et al. 2013] using SUN3Dsfm and our approach.

we are limited to scans of up to 25,000 input RGB-D frames. This
corresponds to about 14 minutes of continuous scanning, assuming
30Hz input—although many RGB-D sensors have a lower frame
rate, which allows for longer sessions. In order to allow for longer

sequences, we would need more than two hierarchy levels to per-
form the optimization in real time. We could also imagine spatial
clustering (e.g., into separate rooms) and split up the optimization
tasks accordingly.
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Fig. 16. Reconstruction results on eight scenes from the SUN3D dataset [Xiao et al. 2013], chosen from the List of Annotated Scenes (our method is fully
automated and does not use any annotations).

7. ADDITIONAL EVALUATION

7.1 Additional Qualitative Results

Reconstructed models for the eight scenes in our dataset are
publicly available.3 While our method and ElasticFusion run at

3http://www.graphics.stanford.edu/projects/bundlefusion/.

real-time rates, Redwood runs offline, taking 8.6 hours for Apt0,
13.2 hours for Apt1, 4 hours for Copyroom, 7.7 hours for Office1,
2.6 hours for Office2, and 3.5 hours for Office3. The relocaliza-
tion (due to sensor occlusion) in the sequence Apt 2 cannot be
handled by state-of-the-art methods such as ElasticFusion and Red-
wood. Redwood is also a geometry-only approach that does not
use the RGB channels. Note that the lack of ElasticFusion results
on some sequences is due to the occasional frame jump in our
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Fig. 17. Reconstructions from the NYU2 dataset [Silberman et al. 2012].
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Table VI. Surface Reconstruction Accuracy on the Synthetic
ICL-NUIM Dataset by Handa et al. [2014]

kt0 kt1 kt2 kt3
DVO SLAM 3.2cm 6.1cm 11.9cm 5.3cm

RGB-D SLAM 4.4cm 3.2cm 3.1cm 16.7cm
MRSMap 6.1cm 14.0cm 9.8cm 24.8cm

Kintinuous 1.1cm 0.8cm 0.9cm 24.8cm
Elastic Fusion 0.7cm 0.7cm 0.8cm 2.8cm

Redwood (rigid) 2.0cm 2.0cm 1.3cm 2.2cm
Ours 0.5cm 0.6cm 0.7cm 0.8cm

Mean distance of each reconstructed model to the ground truth surface. Note that
unlike the other methods listed, Redwood does not use color information and runs
offline.

Table VII. ATE RMSE on the Synthetic Augmented
ICL-NUIM Dataset by Choi et al. [2015]

Living Room 1 Living Room 2 Office 1 Office 2
Kintinuous 27cm 28cm 19cm 26cm

DVO SLAM 102cm 14cm 11cm 11cm
SUN3D SfM 21cm 23cm 24cm 12cm

Redwood 10cm 13cm 6cm 7cm
Ours 0.6cm 0.5cm 15.3cm 1.4cm

Note that unlike the other methods listed, Redwood does not use color infor-
mation and runs offline.

wifi streaming setup, which dense frame-to-model methods cannot
handle.

We additionally evaluate our method on the SUN3D dataset [Xiao
et al. 2013], which contains a variety of indoor scenes captured with
an Asus Xtion sensor. Figure 15 shows reconstruction results for
several large, complex scenes using the offline SUN3Dsfm bundle
adjustment system as well as our approach. Note that our approach
produces a better global structure while maintaining local detail
at real-time rates. The SUN3D dataset also contains eight scenes
that contain manual object-correspondence annotations in order to
guide their reconstructions; we show reconstruction results using
our method (without annotation information) on these scenes in
Figure 16.

In addition, we have reconstructed all 464 scenes from the NYU2
dataset [Silberman et al. 2012], which contains a variety of in-
door scenes recorded by a Kinect. Several reconstruction results are
shown in Figure 17.

7.2 Additional Quantitative Results

The ICL-NUIM dataset of Handa et al. [2014] also provides the
ground truth 3D model used to generate the virtually scanned se-
quences. In addition to the camera tracking evaluation provided in
Section 6 of the article, we evaluate surface reconstruction accu-
racy (mean distance of the model to the ground truth surface) for
the living room model in Table VI.

Additionally, we further evaluate our camera tracking on the aug-
mented ICL-NUIM dataset of Choi et al. [2015], which consists of
synthetic scans of two virtual scenes, a living room and an of-
fice, from the original ICL-NUIM data. In contrast to the original
ICL-NUIM, these scans have longer trajectories with more loop
closures. Table VII shows our trajectory estimation performance on
this dataset (with synthetic sensor noise, using the reported camera
intrinsic parameters), which is on par with or better than the exist-
ing state of the art. Although the camera trajectories are complex,
the additional loop closures help maintain stability (as frames find
matches that are not neighbors, mitigating tracking drift), aiding our
performance in all scenes except Office 1. In this case, our method

Table VIII. Frame Registration and Missed Frames
#Frames #Unregistered Frames

Apt 0 8,560 0
Apt 1 8,580 82
Apt 2 3,989 115

Copyroom 4,480 0
Office 0 6,159 105
Office 1 5,730 1
Office 2 3,500 0
Office 3 3,820 42

SUN3D (avg) 5,100 6
Livingroom 1

(A-ICL)
2,870 1

Livingroom 2
(A-ICL)

2,350 0

Office 1 (A-ICL) 2,690 94
Office 2 (A-ICL) 2,538 0

Frames registered by our method on various sequences. The unregistered frames
are those which did not find sufficient sparse matches, that is, untextured walls or
frames in which the depth sensor was occluded. For instance, in Apt 2, we occlude
the sensor with our hand to demonstrate our relocalization ability, which leads to a
higher unregistered frame count. Note that the SUN3D frame registration is reported
for the average of the scenes shown in Figures 15 and 16, and that A-ICL refers to the
Augmented ICL-NUIM dataset.

Table IX. SIFT Performance for a 640 × 480 Image
#Features Time Detect (ms) Time Match (ms)

150 3.8 0.04
250 4.2 0.07

1,000 5.8 0.42

Detection time (including descriptor computation) is reported per frame, and match
time per image pair (parallelized). On all sequences run, we detect about 150 features
per frame, and about 250 per keyframe.

has difficulty closing the loop, as part of it covers a wall with little
to no color features.

In Table VIII, we show the number of frames registered for
each of our captured sequences, as well as for the augmented
ICL-NUIM and various SUN3D sequences. Our method registers
the vast majority of frames in these sequences, only dropping
frames when they fail to pass our correspondence filters, which
err on the conservative side. Many of the unregistered frames
listed contain sensor occlusions (for the Apt 2 relocalizations) or
untextured walls, indicating that our correspondence and frame
filtering finds a good balance between discarding potentially bad
matches and retaining good matches to maintain stable tracking.

7.3 SIFT Performance

We provide an additional performance analysis of our GPU-based
SIFT detection and matching strategy; see Table IX. Note that for a
1296 × 968 image (another Structure sensor color resolution), the
SIFT detection time increases slightly to ≈6.4ms. We detect ∼150
features per frame, and ∼250 per keyframe, for all sequences.

8. CONCLUSION

We have presented a novel online real-time 3D reconstruction
approach that provides robust tracking and implicitly solves the
loop closure problem by globally optimizing the trajectory for
every captured frame. To this end, we combine online SIFT feature
extraction, matching, and pruning with a novel parallel nonlinear
pose optimization framework, over both sparse features and dense
correspondences, enabling the solution of the global alignment
problem at real-time rates. The continuously changing stream
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of optimized pose estimates is monitored and the reconstruction
is updated through dynamic integration and de-integration. The
capabilities of the proposed approach have been demonstrated on
several large-scale 3D reconstructions with reconstruction quality
and completeness that was previously only possible with offline
approaches and tedious capture sessions. We believe online global
pose alignment will pave the way for many new and interesting ap-
plications. Global accurate tracking is the foundation for immersive
AR/VR applications and makes online hand-held 3D reconstruction
applicable to scenarios that require high-fidelity tracking.
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