
DEMEA: Deep Mesh Autoencoders for Non-Rigidly Deforming Objects
— Supplementary Material —

Edgar Tretschk1 Ayush Tewari1 Michael Zollhöfer2 Vladislav Golyanik1 Christian Theobalt1

1Max Planck Institute for Informatics, Saarland Informatics Campus 2Stanford University

In this supplementary material, we expand on several
points from the main paper. In Sec. 1, we offer additional
analysis of CoMA [6] on larger latent spaces in compari-
son to DEMEA and our baselines. Sec. 2 explains how we
obtain meshes from networks trained with the graph loss
(GL). Sec 3 compares different rotation computations for
the embedded deformation layer (EDL). In Sec. 4, we de-
scribe how we apply temporal smoothing in latent space.
Sec. 5 contains details about skinning template meshes to
embedded graphs. Sec. 6 provides low-level details of our
architecture. In Sec. 7, we describe how we normalize depth
maps and meshes (for reconstruction from real depth data).
In Sec. 8, we describe how to incorporate the embedded
graph into the mesh hierarchy and show the employed mesh
hierarchy for all four datasets. Finally, in Sec. 9, we give
further details on the graph convolutions.

1. Additional Comparisons to CoMA

In addition to latent dimension 8, we also trained
CoMA [6] on latent dimensions 32 and 128 on all four
datasets. Since CoMA uses a batch size of 16, while we use
a batch size of 8 for our method, we report two versions of
CoMA: one that is matched in the number of epochs to our
method and one that is matched in the number of iterations
to our method. I.e., the iteration-matched version is trained
for twice the number of epochs as our method. Note that
we report the iteration-matched numbers for CoMA in the
main paper. See Table 1 for an expanded version of Table 3
from the main paper.

Again, the fully-connected baselines outperform the
graph-convolutional networks for latent dimension 128. For
latent dimension 8, DEMEA gives better quantitative re-
sults than CoMA on all datasets except for CoMA, which
does not include large non-rigid deformations. For latent
dimension 32, the results are more mixed: DEMEA, again,
has better results on Dynamic FAUST and on Cloth, but
performs on par on SynHand5M. On the CoMA dataset,
DEMEA is slightly worse. While these numbers show that
our approach compares favorably to CoMA for large non-
rigid deformations, the advantage of our architecture which

includes the EDL is more evident qualitatively. We avoid
many artifacts present in the results of CoMA and our base-
lines, see Fig. 4 in the main paper.

2. Graph Loss
To obtain mesh results from a network trained for the

graph loss (GL), we need to apply embedded deformation
at test time. Although the trained network predicts graph
node positions tl, it does not regress graph node rotations
Rl. We compute the missing rotation for each graph node l
as follows: assuming that each node’s neighborhood trans-
forms roughly rigidly, we solve a small Procrustes problem
that computes the rigid rotation between the 1-ring neigh-
borhoods of l in the template graph and in the regressed
network output. We directly use this rotation as Rl.

3. Rotations in the EDL
In the main paper, the graph node rotations Rl are

regressed by convolutional layers. Instead, practitioners
might consider using the local Procrustes (LP) formulation
of Sec. 2 inside the network. For this alternative, the net-
work only needs to regress graph node positions tl. From
these, the graph node rotations can be inferred. The EDL
can then take these graph node transformations to compute
the deformed mesh, on which we put the reconstruction
loss.

We extend Table 2 from the main paper by this exper-
iment in Table 2. Note that we do not back-propagate
through the rotation computation as we found this to lead
to training instability. In addition to being faster, we find
that regressing rotations is quantitatively better than LP.

4. Depth-to-Mesh Tracking
We can apply temporal smoothing to the reconstruction

of a sequence of real depth images {Di}i, by decoding a
running (causal) exponential average of the latent vectors
of this sequence. First, we encode the sequence into la-
tent vectors {Di}i. We then define a smoothed sequence
of latent vectors {D′i}i as follows: let D′0 = D0 and set

1



DFaust [2] SynHand5M [5] Cloth [1] CoMA [6]
8 32 128 8 32 128 8 32 128 8 32 128

CoMA (matched epochs) 8.0 3.4 3.2 10.3 4.72 4.10 1.41 1.02 0.89 1.30 0.99 0.89
CoMA (matched iterations) 8.2 3.4 2.6 9.76 4.55 3.40 1.38 1.05 0.88 1.25 0.93 0.85
CA 6.7 3.0 2.6 10.30 4.49 3.76 1.61 0.90 0.72 1.57 0.97 0.87
MCA 8.6 3.4 2.5 9.33 4.55 3.67 1.75 0.82 0.70 1.61 0.99 0.87
Ours 6.6 2.9 2.4 8.97 4.67 3.53 1.34 0.83 0.71 1.49 1.05 0.94
FCA 9.3 3.4 2.2 20.96 7.22 1.44 1.71 0.71 0.44 3.19 1.39 0.75
FCED 8.2 3.1 2.2 20.49 9.13 1.60 1.89 0.69 0.44 3.61 3.19 1.08

Table 1. Average per-vertex errors on the test sets of DFaust (in cm), SynHand5M (in mm), textureless cloth (in cm) and CoMA (in mm.)

FC IG FC IM GC IG GC IM
GL 2.6 8.9 2.4 2.4
LP 2.3 2.6 2.4 2.9
Ours 2.2 2.3 2.3 2.4

Table 2. Evaluation of different settings of our network on the test
set of DFaust [2] using the latent code of length 128. The numbers
are the average vertex errors in cm.

DFaust SynHand5M Cloth CoMA
|Nvi
| 12 7 5 6

σ 0.05 0.009 0.015 0.01
Table 3. Skinning parameters for each dataset.

D′i = α · Di+ (1−α) · D′i−1 for i > 0 for some α ∈ [0, 1].
The smoothed sequence of meshes {Mi}i is obtained by
decoding {D′i}i.

5. Skinning
We compute the skinning weight wl(vi) of vertex vi to

one of its approximately closest skinning nodes l ∈ Nvi as:

wl(vi) = exp

(
−‖gl − vi‖2

2 · σ2

)
, (1)

where σ ∈ R depends on the dataset. Table 3 contains our
choice of parameters for each dataset.

6. Architecture
Fig. 1 contains our low-level architecture. GC(f) is a

Chebychev graph-convolutional layer with f output fea-
tures. DS is a down-sampling layer and US is an up-
sampling layer. Conv2D(f,k,s) is a 2D convolution with
f output features, kernel size k × k and stride s. We
modified ResNetV2 50 by removing its first convolutional
layer and its final non-convolutional layers. We use ReLU
non-linearities after every graph-convolutional, 2D convo-
lutional and fully-connected layer except for the first 2D
convolutional layer in the depth encoder and the last graph-
convolutional layer. The third up-sampling module (i.e. up-
sampling layer followed by a graph convolution) is only
used for higher-resolution embedded graphs. All graph con-

volutions use K = 6, except for the last two, which use
K = 2 for local refinement.

7. Normalization
Depth All depth-to-mesh networks rescale the depth val-
ues of the input depth map from between 0.3m and 7m to
[−1, 1].

Bodies: Depth For our depth-to-mesh network on bod-
ies, we employ a number of additional normalization steps
to focus on non-rigid reconstruction. First, we assume to be
given a segmentation mask that filters out the background.
The depth value of background pixels is set to 2. We crop
the foreground tightly and use bilinear sampling to isotrop-
ically rescale the crop to 256 × 256. Given such a depth
crop, we compute the average (foreground) depth value and
subtract it from the input. Such normalization necessitates
normalizing the network output, as we will describe next.

Bodies: Meshes We first normalize out the global transla-
tion from the meshes by subtracting from each mesh vertex
the average vertex position. Since scale information is also
lost, we fix the scale of the meshes by normalizing their
approximate spine length. To that end, we compute the ap-
proximate spine length of the template mesh and of each
mesh in the dataset. We then isotropically rescale all the
meshes to the same spine length as the template mesh. The
depth-to-mesh body reconstruction errors in the main paper
are reported for these normalized meshes.

8. Mesh Hierarchy
We use the code of [6] to generate the mesh hierarchy.

However, we need to preserve the nodes of the embedded
graph throughout all hierarchy levels between the embed-
ded graph and the full-resolution mesh. The code is based
on QSlim [4], which uses quadric edge errors. For every
edge, it computes the cost of removing one of the vertices
from the mesh. For all levels that are at least as fine as the
embedded graph, we simply set the cost of removing a node
of the embedded graph to infinity.



Figure 1. The low-level architecture of DEMEA (orange path) and the depth-to-mesh network (blue path). Note that the two paths are not
trained simultaneously.

Figure 2. Body hierarchy.

Figure 3. Hand hierarchy.

Figures 2, 3, 4 and 5 visualize the five levels of the mesh
hierarchy used for computing the barycentric up-sampling
weights for the graph up-sampling layers.

9. Graph Convolution Details

Our graph encoder-decoder architecture is based on fast
localized spectral filtering [3]. Given an Fin-channel fea-
ture tensor x ∈ RN×Fin , where the features are defined at
the N graph nodes, and let xi ∈ RN denote the i-th input
graph feature map, we define the j-th output graph feature

Figure 4. Face hierarchy.

Figure 5. Cloth hierarchy.

map yj ∈ RN as follows:

yj =

Fin∑
i=1

gθi,j (L)xi . (2)

Here, L is the Laplacian matrix of the graph and the filters
gθi,j (L) are parameterized using Chebyshev polynomials of
order K.

Specifically,

gθi,j (L) =

K−1∑
k=0

θi,j,kTk(L̃), (3)



where θi,j,k ∈ R and L̃ = 2L/λmax − I. The Cheby-
chev polynomial Tk is defined as Tk(x) = 2xTk−1(x) −
Tk−2(x), T1(x) = x, and T0(x) = 1.

This leads to K-localized filters that operate on the K-
neighbourhoods of the nodes. The complete output fea-
ture tensor, that stacks all Fout feature maps, is denoted as
y ∈ RN×Fout . Each filter gθi,j (L) is parameterized by K
coefficients, which in total leads to Fin × Fout ×K train-
able parameters for each graph convolution layer, see [3] for
more details.

References
[1] J. Bednařı́k, P. Fua, and M. Salzmann. Learning to reconstruct

texture-less deformable surfaces. In International Conference
on 3D Vision (3DV), 2018. 2

[2] F. Bogo, J. Romero, G. Pons-Moll, and M. J. Black. Dynamic
FAUST: Registering human bodies in motion. In Computer
Vision and Pattern Recognition (CVPR), 2017. 2

[3] M. Defferrard, X. Bresson, and P. Vandergheynst. Convo-
lutional neural networks on graphs with fast localized spec-
tral filtering. In International Conference on Neural Informa-
tion Processing Systems (NIPS), NIPS’16, pages 3844–3852,
2016. 3, 4

[4] M. Garland and P. S. Heckbert. Surface simplification us-
ing quadric error metrics. In Proceedings of the 24th annual
conference on Computer graphics and interactive techniques,
pages 209–216. ACM Press/Addison-Wesley Publishing Co.,
1997. 2

[5] J. Malik, A. Elhayek, F. Nunnari, K. Varanasi, K. Tamad-
don, A. Héloir, and D. Stricker. Deephps: End-to-end esti-
mation of 3d hand pose and shape by learning from synthetic
depth. 2018 International Conference on 3D Vision (3DV),
pages 110–119, 2018. 2

[6] A. Ranjan, T. Bolkart, S. Sanyal, and M. J. Black. Generat-
ing 3D faces using convolutional mesh autoencoders. In Eu-
ropean Conference on Computer Vision (ECCV), pages 725–
741, 2018. 1, 2


